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ABSTRACT
While most mortality rates have decreased in the US, maternal mor-
tality has increased and is among the highest of any OECD nation.
Extensive public health research is ongoing to better understand the
characteristics of communities with relatively high or low rates. In
this work, we explore the role that social media language can play
in providing insights into such community characteristics. Analyz-
ing pregnancy-related tweets generated in US counties, we reveal
a diverse set of latent topics including Morning Sickness, Celebrity
Pregnancies, and Abortion Rights. We find that rates of mention-
ing these topics on Twitter predicts maternal mortality rates with
higher accuracy than standard socioeconomic and risk variables
such as income, race, and access to health-care, holding even after
reducing the analysis to six topics chosen for their interpretability
and connections to known risk factors. We then investigate psy-
chological dimensions of community language, finding the use of
less trustful, more stressed, and more negative affective language is
significantly associated with higher mortality rates, while trust and
negative affect also explain a significant portion of racial disparities
in maternal mortality. We discuss the potential for these insights
to inform actionable health interventions at the community-level.
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1 INTRODUCTION
The United States has one of the highest maternal mortality rates
of any country in the Organization for Economic Cooperation and
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Development group [11, 22]. Approximately 700 individuals die
from pregnancy-related causes [3, 15, 66] and an estimated 60% of
these deaths are suspected to be preventable [67]. While the inter-
national trend has seen a reduction in maternal mortality, despite
increased budgets, rates in the US have more than doubled in the
past 25 years [3].1 Black and Latina mothers bear a disproportionate
brunt of this burden: Black women are three to four times more
likely to die during childbirth, even after controlling for numerous
socioeconomic and risk factors [67]. These rates vary by geography:
e.g., in New York City, Black women are 12 times more likely to die
during childbirth than white women [62, 71].2

Public health research has examined potential causes for mater-
nal mortality and disparities, pointing to issues such as access to
insurance, bias in health-care, segregated hospitals, and inadequate
post-delivery care [8, 26, 48, 49, 52]. While it is understood that
each of community, health facility and system, patient, and provider
all play a part, there is an overall pervasive concern that the specific
causes and mechanisms for maternal mortality and disparities are
not adequately understood [67]. The WHO cites a “general lack of
good data – and related analysis – on maternal health outcomes"
as a bottleneck for gaining insights into this issue [3].

In this work, we seek to partially address this gap, focusing
on community-level factors that characterize maternal mortality
as revealed through social media language. We examine whether
community variables derived from social media language data can
predict community maternal mortality rates and its racial disparity.
While emotions and language analyzed using social media data
are shown to have high-efficacy in tasks ranging from predicting
allergies or life satisfaction to depression or heart disease mortal-
ity [25, 29, 32, 64, 73], the potential of social media has yet to be
examined in this manner to help shed understanding on maternal
mortality at the community level.

Our contributions in this work are in three-folds:

• We show that there is a diverse set of pregnancy-related
topics ranging from Morning Sickness, to Abortion Rights, to
Maternal Studies. We demonstrate that these topics predict
maternal mortality rates with higher accuracy than standard
socioeconomic (SES), risk factors, and race.

1Note, on the other hand, US infant mortality is at a historic low [13].
2This issue has garnered increases attention in part due to concentrated efforts

by policy-makers, advocacy groups, and celebrities, in addition to long-standing work
by community organizations [34, 35, 39, 57, 78]. e.g., see collaborations between the
Atlanta-based Black Mamas Matter Alliance and the Black Maternal Health Caucus.
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• We show that a select set of six topics, chosen for their inter-
pretability and relations to known maternal health factors,
hold as much predictive power as all pregnancy-related top-
ics. Specifically, four of these topics – Maternal Studies, Teen
Pregnancy, Abortion Rights, and Congratulatory Remarks –
have negative associations with mortality rates.

• We examine variables associated with racial disparities in
maternal mortality (i.e. the difference between rates for Black
women and other races), finding that language-based scores
for trust and affect hold explanatory power for the county-
level relationship between race and maternal mortality, even
after controlling for standard SES and risk-factors.

2 BACKGROUND AND RELATEDWORK
MaternalMortalityBackground. Public health research has sought
better measurements of maternal mortality rates and their causes
and consequences [3, 22, 66, 67]. There is a long line of work explor-
ing what community, patient, hospital, provider, or systemic-level
factors may contribute to high rates of mortality and disparities
in the US [33, 47, 54, 55]. At the patient-level, cardiovascular con-
ditions, which are related to stress, cause about one third of all
pregnancy-related deaths [67]. At the community and systemic-
level, studies have shown that delivery site, segregation, and dis-
crimination in maternity care during visits all play a role [8, 26, 48,
49]. At the systemic-level, sociological and economic research have
shown racial disparities in mortality and life-expectancy [18, 53]. In
line with such studies, there are numerous calls to use a data-driven
approach to better grasp the role and causes of maternal mortality
related to each of the above main categories [67].

Social Media Data for Health. Twitter data and more gener-
ally social media data has been a popular source for exploring
community-level health measurements [65]. Examples include ex-
cessive alcohol consumption [25], depression [28, 60], heart dis-
ease, [32], and more generally population health and well-being
[24, 37, 73]. In addition to measuring community-level insights,
these data sources have been used to study health information seek-
ing and sharing [30] and individual-level predictions [29]. In recent
years, there has also been interest in understanding the societal and
ethical implications and limitations around the use of social media
data for health studies and roles for computing as a diagnostic of
social problems [1, 4, 16, 17, 20].

Maternal Health. An emerging topic of interest has been the use
of language-driven analysis to understand pregnancy and maternal
experiences. For instance, De Choudhury et al. [27] studied Twitter
posts to understand changes in emotions formothers; Antoniak et al.
[5] looked at narrative paths in individuals sharing childbirth stories
on an online forum. Focusing on support, Costa Figueiredo et al.
[21], Gui et al. [41], Vydiswaran et al. [77] looked at how online peer
support and information exchange for pregnant individuals, their
caregivers, and individuals experiencing fertility issues. Abebe et al.
[2] looked at information seeking for pregnancy and breastfeeding
related to HIV. To our knowledge, ours is the first work to employ
a language-driven study to understand maternal mortality in the
US.

3 DATA
We used three sets of data sets for this study, described below:

3.1 Twitter Data and Seed-Words
To generate our pregnancy data set, we started with a random
10% sample of the entire Twitter stream collected between 2009
and 2015 [69]. We then used this data set to build two subsets: (1)
pregnancy-related tweets and (2) tweets geo-located to US counties.
Pregnancy-Related Tweets. The first data set consisted of tweets
related to pregnancy and birth. Tweets were pulled from the main
data set if they contained the following seed-words: pregnancy,
pregnant, infant, fetus, miscarriage, prenatal, trimester, complications,
pregnant, birth, childbirth, pregnancies, baby, children, pregnancy,
mother, newborn, child, as well as their plural form, hashtags such
as #pregnancy, and capitalizations such as Pregnancy. These seed-
wordswere selected by examining nearest neighbors fromword2vec
for words related to ‘pregnancy’ and ‘pregnant.’

We then manually examined a random sample of 1,000 tweets
from the data set to test for relevance to pregnancy. Tweets that
were deemed off-topic, such as those containing phrases like “mis-
carriage of justice" were used to generate phrases for further data
cleaning. We also randomly sampled tweets for specific seed-words
and if a substantial (i.e., more than 20%) of the tweets were un-
related to pregnancy, all tweets were removed from the data set,
reducing the seed-set. After these cleaning steps, we kept 74.40% of
the data set, and validated in fresh sample of 1,000 tweets that over
95% of them are related to pregnancy.
U.S. County Tweets. The second data set consisted of tweets geo-
located to U.S. counties. For this we used the County Tweet Lexical
Bank [38]. This data set was geo-located using self-reported location
information (from the user description field) and latitude / longitude
coordinates [73]. The data were then filtered to contain only English
tweets [56]. We then limited our data set to Twitter users with at
least 30 posts and U.S. counties with at least 100 such users. The
final Twitter data set consisted of 2,041 U.S. counties.

3.2 Mortality Rates
The World Health Organization (WHO) defines maternal mortal-
ity as “the death of a woman while pregnant or within 42 days
of termination of pregnancy, irrespective of the duration and site
of the pregnancy, from any cause related to or aggravated by the
pregnancy or its management but not from accidental or incidental
causes" with the Centers for Disease Control and Prevention (CDC)
expanding this time period to 1 year [23, 79]. Data for maternal mor-
tality was collected from the CDC WONDER online database [14].
We collected rates from 2009-2017, so as to match the time-span
of our Twitter sample in addition to more recent years (2016 and
2017) since these rates are on the rise [66]. Mortality rates are listed
under the following International Classification of Diseases, Tenth
Revision (ICD-10) categories: O00-O07 (pregnancy with abortive
outcome) and O10-O99 (other complications of pregnancy, child-
birth and the puerperium). The CDC suppresses data if a county
experiences less than 10 deaths in a given time period for privacy
reasons. Of the 2,041 counties in our Twitter set only 197 also had
mortality rates (i.e., counties experiencing 10 or more deaths).
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Since the CDC does not report age-adjusted rates for counties
with low mortality numbers, we took the crude rate as reported and
created our own age-adjusted rate. To do this, we built a model using
median age of females (American Community Survey, 2014; 5-year
estimates) and predicted maternal mortality, taking the residuals as
our new “age-adjusted maternal mortality rate.” This age-adjusted
value is used throughout the paper.

3.3 Socioeconomic Measures and Risk Factors
In addition to mortality, we collected additional county-level vari-
ables on socioeconomics, risk factors, and race. Socioeconomics in-
cluded unemployment rate, median income, and education (percent-
age of people with Bachelor’s degrees and High School graduate
percentage). For risk factors, we included insurance rates and ac-
cess to health-care (the ratio of population to number primary care
providers). Finally, we also explored the relationship between lan-
guage and maternal mortality with respect to percentage of Black
individuals in each county. As discussed previously, the disparity in
mortality rates for Black women is large and providing evidence to-
ward the factors at play for such a disparity is a key application for
our analyses. Additionally, to account for overall rates of birth, all
analysis included a birth rate covariate (the rate per 1,000 women,
aged 15-50, with births in the past 12 months).

The birth rate, race, SES variables, and insurance rates were
collected from the 2014 American Community Survey (5 year esti-
mates), whereas the primary care providers was collected from the
2017 County Health Rankings (as reported by the Area Health Re-
source File/American Medical Association, 2014). We were able to
obtain these values for each of the counties which met the Twitter
and mortality inclusion criteria above.

Overall, we obtained data for 197 U.S. counties and county equiv-
alents that met each of the data requirements above and conducted
our study on these counties. The full list of these counties is in-
cluded in the project page.5

4 TOPICS AND THEORETICAL LINGUISTIC
FEATURES

We used three sets of features that will characterize maternal mor-
tality through language. First, we created a set of automatically-
derived topics built over the pregnancy-related tweets. These topics
reveal a diversity of themes in discussions around pregnancy on
the platform. Next, we used a small set of theoretically-driven lan-
guage features – (affect, depression, stress, and trust) – in order to
access psychological traits of a community and their relations to
maternal mortality. Finally, we use a large, general set of topics
(non-pregnancy related) to identify broader language patterns.

4.1 Pregnancy-Related Topics
We start with our data set of over 5 million pregnancy-related
tweets described in Section 3. We automatically extracted topics
using Latent Dirichlet Allocation (LDA) [12]. LDA is a generative
statistical model which assumes that each document (in our case
tweet) contains a distribution of topics, which in turn, are a distri-
bution of words. We use the Mallet software package [58], which
estimates the latent variable of the topics using Gibbs sampling [36].
All default Mallet settings were used, except α , which is a prior on

the expected topics per document. We set α = 2 since tweets are
shorter than the typical length of documents. The number of topics
is a free parameter and we chose 50 topics.3

Topic Label Top Weighted Words
Teen
Pregnancy
(1.34%)

teen, rate, rates, teenage, highest, mortality, low,
states, teens, higher, number, 20, country, amer-
ican, united, education, lowest, population

Morning
Sickness
(0.54%)

morning, sickness, purpose, symptoms, lives,
wanted, williamson, tv, experience, cure, bra,
marianne, thinking, signs, oral, teenagers, simon

Celebrity
Pregnancies
(1.42%)

kim, kardashian, kayne, amber, rose, beyonce,
years, west, harry, finish, swear, north, who’s,
kayne’s, taylor, sets, louis, wiz

Abortion
Rights (2.15%)

women, abortion, care, health, abortions, bill,
mortality, #prolife, rights, law, gift, support, cir-
cumstances, crisis, irrelevant, #prochoice, forced

Maternal
Studies
(2.56%)

risk, defects, study, health, weight, linked, flu,
cancer, early, diet, drinking, smoking, blood, safe,
alcohol, diabetes, autism, acid, disease, drug

Congratulatory
Remarks
(3.06%)

congrats, congratulations, :), boy, happy, love,
daughter, son, <3, wait, sister, late, healthy,
cousin, xx, amazing, :d, meet, proud

Table 1: Sample pregnancy topics with representative words

We find that our data reveals a rich set of themes related to
pregnancy and birth. In Table 1, we show a sample of six topics,
which are hand-selected to demonstrate the breadth of topics in
the data set.5 The first column provides the topic label, which were
hand-generated by the authors, and the frequency with which the
topic occurs in the data set.4 The last column corresponds to the
top 10 most representative words for the topic.

These above topics show that pregnancy-related discussions
on Twitter can range from personal-health disclosure such as in
Morning Sickness, to political conversations related to Abortion
Rights, and light topics such as Congratulatory Remarks. Topics that
were not included in manuscript due to length constraints include
Royal Baby, Food Cravings, and Pregnancy Timeline. Each of these
topics shows varying levels of popularity across the counties.

4.2 Theoretical Features
We also explore a set of theoretically-driven language features:
affect, depression, trust, and stress. We downloaded pre-existing
models to derive county-level language features including:

• affect – positive and negative emotional valence trained
over Facebook posts [70].

• depression – degree of depressive personality (a facet of
the big five personality test) fit over social media users’ lan-
guage [72].

3Before running the rest of our analysis, we ran LDA using 10, 20, 50, 100, and
200 topics. We selected 50 topics based on manual inspection of coherence and inter-
pretability of the topics.

4Note, since there are 50 topics, the average value is 2%. Furthermore, since
some themes, such as celebrity pregnancy, occur in more than one topic, the overall
frequency of this theme in the data set is higher than the corresponding value in this
table.
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• trust – degree of trustfulness (how much one tends to trust
persons or entities that they do not personally know) fit over
social media users’ language [80].

• stress – amount of stress fit over social media users’ lan-
guage and Cohen’s Stress scale [19, 42].

4.3 General Topics
Finally, we use a larger set of LDA topics built over a more general
data set. By doing this in tandem with the pregnancy-related topics,
we can zoom in on pregnancy-related themes while also exploring a
larger set of language correlates, which might help in characterizing
communities suffering from higher or lower rates of mortality. To
this end, we downloaded a set of 2,000 topic posteriors that were
automatically-derived over the MyPersonality data set [74]. These
topics have been used over a large class of problems and have been
found to be robust both in terms of interpretability and predictive
power [32, 50, 63, 68], so they form a point of comparison for our
domain-specific topics.

5 METHODS
To understand the relationship between community level language
and maternal mortality, we perform three types of statistical analy-
ses: (1) prediction — can language be used to predict mortality rates
in a cross-sectional cross validation setup? (2) differential language
analysis – can we gain insights into communities which suffer from
higher or lower maternal mortality through language? and (3) me-
diating language analysis — can language be used to understand
the mechanisms through which Black communities experience in-
creased rates of maternal mortality? All data processing, feature
extraction and statistical analysis are performed using the open
source Python package DLATK [75].

5.1 Prediction
We use two types of predictive models, depending on the type of
independent variables. All non-language variables (i.e., SES and
risk factors) are modeled with an ordinary least squares (OLS)
regression, whereas language features use an ℓ2 regularized (Ridge)
regression [46]. In addition to regularization, we also use a feature
selection pipeline in all language based models, since the number
of features can be larger than the number of observations (N=197
counties). The pipeline first removes all low variance features and
then features that were not correlated with our outcome. Finally,
we applied Principal Component Analysis (PCA) to further reduce
the number of features. All models are evaluated in a 10-fold cross
validation setup, with the Ridge regularization parameter α tuned
on the training set within each fold. Predictive accuracy is measured
in terms of a single Pearson correlation between the actual values
and the predicted values, whereas standard errors are calculated
across all 10 folds.

5.2 Differential Language Analysis
Differential Language Analysis (DLA) is used to identify language
characterizing maternal mortality [51, 74]. Here we individually
regress each of our language variables (i.e., pregnancy related top-
ics and theoretical features) using an OLS regression, adding in
access to health-care, birth rates, socioeconomics and risk factors

as covariates. We adjust for multiple comparisons by applying a
Benjamini—Hochberg false discovery rate correction to the signifi-
cance threshold (p < .05) [10]. For LDA topics we visualize topics
significant correlations as word clouds. The word clouds display
the top 15 most prevalent words within a topic sized according to
their posterior likelihood.

5.3 Mediating Language Analysis
We explore the relationship betweenmaternal mortality and the per-
centage of Black individuals within a county, as expressed through
the county’s language. Language based mediation analysis has been
used in the past to explore the relationship between socioeconomics
and excessive drinking [25]. For this analysis, we residualize the
crude maternal mortality rate, as reported by the CDC, on median
age of female, birth rates, all socioeconomic variables (income, edu-
cation and unemployment), insurance rates and rates of primary
care providers.

For each language variable, both the pregnancy related LDA
topics and theoretical language features, we consider the mediat-
ing relationship between the topic (mediator), percentage Black
(independent variable) and residualized maternal mortality rates
(dependent variable). We follow the standard three-step, Baron and
Kenny approach [9]. Step 1: we regress our independent (x) and
dependent variables (y; path c) in a standard OLS regression. Step 2:
we regress the independent variable (x) and mediator (m; path α ).
Finally, in Step 3 we create a multi-variate model and regress both
the mediator (m; topic) and independent variable (x ; percentage
Black) with maternal mortality (y; path c ′). The three models are
as follows:

y = cx + β1 + ϵ1, (1)
m = αx + β2 + ϵ2, (2)

y = c ′x + +βm + β3 + ϵ3. (3)
The mediation effect size (c − c ′) is taken as the reduction in the
effect size between the direct relationship (i.e., percentage Black
and maternal mortality) and the mediated relationship. To test for
significance, we use a Sobel p [76] and correct all p values for false
discoveries via a Benjamini—Hochberg procedure.

6 RESULTS
We begin by looking at correlations between maternal mortality
and various socioeconomics and risk factors. Table 2 shows the set
of correlation coefficients. These results state that the percentage
of the population that is Black and unemployment rate were posi-
tively correlated with maternal mortality rate and insurance access,
income, and education were negatively correlated with maternal
mortality rate. Additionally, birth rates were not significantly cor-
related with maternal mortality. Note that, in this paper, we only
consider 197 counties in the US due to constraints around Twitter
and county-mapped data as discussed in Section 3. While the corre-
lation values do not exactly match correlations for all US counties,
the general direction of relationship between maternal mortality
rates and these SES and risk-factors was the same, with those the
strongest associations – such as percent Black – also matching.

We next look at the predictive accuracy of our 50 topics, the
2000 general topics, and the above SES and risk-factors as well as
percent Black values. For this, note that we used linear regression
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Correlation
Birth Rates
Rate per 1,000 women .10 [-.04,.24]

Race
Black (percent) .49 [.36,.61]***

Risk Factors
Primary Care Providers -.23 [-.38,-.09]**
Uninsured (percent) .27 [.12,.41]***

Socioeconomics
Income (log median) -.42 [-.55,-.29]***
High School or more (percent) -.14 [-.28,.01]
Bachelor’s Degree (percent) -.38 [-.52,-.23]***
Unemployment (percent) .26 [.12,.39]***

Table 2: Correlations with risk factors, socioeconomics, and
race. All non-birth rate correlations controlled for birth
rates. Reported standardized β with 95% confidence intervals
in square brackets; ***p < 0.001, **p < 0.01, *p < .05, after
Benjamini—Hochberg correction

.00 .20 .40 .60 .80
Pearson r

Risk Factors

Socio-economics

Race

SES + Risk Factors + Race

6 Pregnancy Topics

50 Pregnancy Topics

2000 General Topics

Figure 1: Prediction accuracy for non-language variables
(red), pregnancy related LDA topics (purple) and general set
of LDA topics (blue). Reported Pearson r from 10-fold cross
validation, errors bars are 95% CI.

with maternal mortality values as the outcome variable and the
aforementioned language variables as the explanatory variables.
Figure 1 shows that the 2000 general Facebook topics had the high-
est predictive power with a Pearson r = .72 [.65, .79]*** while risk
factors (PCP access and insurance rate) were the lowest with a Pear-
son r = .21 [.05, .38]**. Overall SES factors, risk factors, and race,
had significantly less predictive accuracy (using a paired t-test) than
the 50 pregnancy-related topics from the Twitter data (t = −4.63,
p < .001) and the 2000 general topics (t = −4.74, p < .001).

For the Differential Language Analysis (DLA), we selected the
6 topics of interest. We ran a multi-linear regression, treating the
maternal mortality rate as an outcome variable and the prevalence
of these topics in the counties as the explanatory variable with
birth rates, race, risk factors and socioeconomics as covariates. We
found that five of the 6 topics, shown in Figure 2 had significant
associations with maternal mortality rates. Maternal studies had

the most negative association – i.e., counties where there are rela-
tively more tweets related to this topic had lower rates of mortality.
Note that each of the four topics in the figure – Maternal Studies,
Teen Pregnancies, Congratulatory Remarks, and Abortion Rights – all
show negative associations with maternal mortality rates. Celebrity
Pregnancies, not shown, is positively associated (.20 [.07, .33]∗) with
higher mortality.

-.38 [-.49,-.25]*** -.35 [-.47,-.22]***

-.28 [-.40,-.14]*** -.19 [-.32,-.05]*

Figure 2: Differential Language Analysis using 6 pregnancy
related LDA topics, controlled for race, risk factors and so-
cioeconomics. Reported standardized β with 95% confidence
intervals in square brackets;***p < 0.001, **p < 0.01, *p < .05,
after Benjamini—Hochberg correction.

We also used 4 theoretical features within the DLA framework:
affect, depression, stress and trust. Results are presented in Table 3.
We see higher rates of maternal mortality associated with higher
distrust, higher stress, higher depression, and with less affect.

Correlation
Affect -.30 [-.43,-.17]***
Depression .23 [.10,.36]**
Stress .24 [.10,.37]**
Trust -.38 [-.49,-.25]***

Table 3: Differential Language Analysis of theoretically rele-
vant features. Reported standardized β with 95% confidence
intervals in square brackets;***p < 0.001, **p < 0.01, *p < .05,
after Benjamini—Hochberg correction.

Finally, we explore disparities by race at the population level.
The county-level health disparity itself can be seen simply from the
strong correlation between the two variables: communities that are
more Black, have greater maternal mortality. We turn to Twitter-
based community characteristics as mediators (i.e. explainers) of
this race-mortality relationship. The idea behindmediation analysis,
is that if included a 3rd variable (i.e. a Twitter measurement) in the
linear analysis reduces the relationship of the first 2 (i.e. race and



WWW ’20, April 20–24, 2020, Taipei, Taiwan Abebe and Giorgi, et al.

c − c ′ α β

Affect .11** -.40 [-.53,-.27]*** -.27 [-.41,-.13]***
Depression -.04 -.26 [-.39,-.12]*** .14 [.01,.28]*
Stress -.01 -.06 [-.20,.08] .15 [-.02,.28]*
Trust .14** -.51 [-.63,-.39]*** -.27 [-.42,-.12]***

Table 4: Mediating Language Analysis: Analysis seeks to ex-
plain the correlation, c = .36, between percent Black and
residualized maternal mortality through differences in lan-
guage. α : correlation between the theoretical factor and per-
cent Black; beta: correlation between the theoretical factor
and residualized maternal mortality. Reported Pearson r
with 95% confidence intervals in square brackets; ***p <
0.001, **p < 0.01, *p < .05, after Benjamini- –Hochberg cor-
rection. The c−c ′ column uses a Sobel p for significance [76].

maternal mortality), then this third variable is accounting for some
of the covariance between the first two.

We considered each of the 4 theoretical dimensions as poten-
tial mediators. To zero in on explaining what is novel about the
race-mortality, we controlled for all previously mentioned socioe-
conomic and risk factor variables by producing a residual of the
variance left over. The correlation between percent Black and ma-
ternal mortality was then c = .36 Without this step, it could be
that any mediators were simply accounting for socioeconomic or
risk factor effects. As seen in Table 4, we found two of the theo-
retical dimensions and 3 of the topics had a significant mediation
effect, in part explaining the disparity. For example, trust medi-
ated the relationship – the fact that communities expressing lower
trust had greater maternal mortality, partially explained why Black
percentage related to greater mortality.

7 DISCUSSION
The results shown in this work demonstrate the efficacy of social
media language to shed some light on community characteristics
of maternal mortality. While social media data, by itself, is not
able to reliably identify causes for high maternal mortality rates
and disparities, it can provide supporting evidence for existing
conjectures and generate hypotheses for further investigation.

The observation that pregnancy-related topics, as well as the
general 2,000 topics, both hold more predictive power than SES,
risk factors, and race, combined, shows that such language-based
data sets may contain characteristics of communities beyond that
captured in standard variables used to study maternal mortality.
Furthermore, the diversity of discussion themes in the pregnancy-
related data set presents an opportunity to consider how different
topics relate with maternal mortality rates and patterns of topic
popularity across US counties.

The novel mediation results presented in this work allow us to
gain further insights into how affect, depression, stress, and trust
relate to mortality rates and disparities. The results that trust and
affect related significantly with mortality rates mirrors discus-
sions from public health research: for instance, failure by hospitals,
providers, and facilities to provide unbiased and nondiscriminatory
care has already been shown to result in lower follow-up visits by

Black and Latina women, which is believed to drive higher mor-
tality rates. Trust in physicians and medical institutions has been
extensively studied [43–45, 59], with multiple studies focusing on
racial and ethnic differences in levels of trust [6, 7, 31, 40]. Find-
ings repeatedly show ethnic and racial differences in trust towards
health-care systems, in addition to showing that distrust is associ-
ated with racial disparities in use of preventive services [61]. The
affect result is also related to the Congratulatory Remarks topic,
indicating that communities with both more positive language and
more positive discussions around pregnancy and birth may also be
experiencing lower maternal mortality rates and disparities. These
observations, along with existing discussions, provide potential
actionable insights for policies at the community level.

The results here are not without limitations: as with other studies
heavily relying on social media data, there are inherent issues of
selection bias in who is on the platform and which users meet the
inclusion thresholds we set for the pregnancy-related and county-
mapping data sets. There is also selection bias in tweets that are
geo-located as well as language use by the individuals on Twitter
compared to other platforms. It is imperative to not take these data
sets as being representative of the U.S., the counties we study, or
even individuals that maybe included in the data sets.

Furthermore, we do not control for linguistic differences across
different parts of the U.S. and some topics, as a result, may show
significant spatial and geographic associations. Likewise, we set the
seed-words for constructing the pregnancy-related data set using
word2vec, which may also suffer bias issues: e.g, certain words
which may be commonly used to discuss pregnancy and birth by
certain groups of under-represented individuals may not pass this
analysis. While we attempt to control for this by having a relatively
large number of seed-words and instead relying on data cleaning,
this remains a notable limitation.

We were hindered by the availability of outcome data: a lot of the
relevant data is available only at the county-level and crucial data
like disparities by race were entirely unavailable. While we believe
that studies like ours will provide additional data-sources, models,
and measurements to further our understanding of maternal mor-
tality and disparities, availability of ground truth data presents a
significant bottleneck. The availability of ground truth data about
mortality and disparities, including data regarding mortality rates
for groups of individuals belonging to marginalized communities,
as well as disaggregated data by different demographics such as
race, age, education, income, and other demographics would allow
for more fine-grained analysis.
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