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MessageAnnotator

acts on the corpus’ text (parsing, 
sentence segmentation, ...)

MessageTransformer

base generic class: works with a 
corpus given a unit of analysis 
(e.g. user_id, tweet_id)

DLAWorker

instantiates dlatk objects for 
interactive use (e.g. creates pandas 
data frames)

FeatureStar

extracts continuous or discrete 
variables from the corpus

FeatureExtractor

works with language features

FeatureGetter

works with extra-linguistic 
information

OutcomeGetter

Data Engine
corpus

extra-
linguistics 

 unit of analysis

analyzes extra-linguistic 
information joint with features 
(DLA, mediation analysis, …)

OutcomeAnalyzer

filters sets of language features 
(PMI, tf-idf, ...)

FeatureRefiner
extracts features from semantic 
annotations (semantic roles, 
named entities, …)

SemanticsExtractor
performs topic modeling or works 
with packages (Mallet) to perform 
topic modeling

TopicsExtractor

performs dimensionality reduction 
on features and outcomes 
(PCA, CCA, …) 

DimensionReducer
performs classification of binary 
outcomes given language features 
and controls

ClassifyPredictor
performs prediction of continuous 
outcomes given language features 
and controls

RegressionPredictor

Classification and Prediction

outcomes, controls

Key Functionality 1: Multiple Levels of Analysis

DLATK allows one to work with a single corpus at multiple levels of analysis
(document, user, date, community). At each level one can incorporate extra-
linguistic information
•Document: time, location, likes
•User : demographics, medical records, questionnaire responses
•Community: Census or CDC data

Key Functionality 2: Extra-linguistic information

DLATK enables incorporation of “extra-linguistic” or human-/community-level
attributes (e.g. examples of such information: age, gender, personality, health,
income, education-level.)
•Differential language analysis can utilize as either an ‘outcome’ or ‘control’ to
reveal distinguishing language.

•Prediction can incorporate alongside linguistic features and has functionality
to handle the heterogeneity of including both linguistic and
human/community features.

Key Functionality 3: Integration of Popular Packages

•Python: numpy, scikit-learn, statsmodels, pandas
•NLP : Stanford parser, TweetNLP, NLTK
•Other : Mallet, IBM wordcloud
• Install : pip, conda, GitHub

Analysis Pipelines

•Feature Extraction (n-grams, part of speech, topics / lexica)

•Correlation (Differential Language Analysis)

•Prediction and Classification

•Dimensionality reduction and clustering

•Mediation

•Wordcloud visualization

Use Case 1: Differential Language Analysis
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Differential Language Analysis (DLA): the identification of
linguistic features which either (a) independently explain the most
variance for continuous outcomes or (b) are individually most pre-
dictive of discrete outcomes [1].

•Prototypical use of DLATK is to perform DLA
•Goal is to produce language that is most related to or
independently discriminant of outcomes

•Univariate, per-feature fashion or with a limited set of control
variables

•Corrects for multiple comparisons using the Benjamini-Hochberg
method of FDR correction

(a) Age (pos) (b) Age (neg)

(c) Educator (d) Technology Worker
Figure: 1- to 3-grams significantly correlated with (a) age (positive; higher age), (b) age (negative;
lower age), (c) educator occupation and (d) technology occupation. This was run over the Blog
Authorship Corpus [2] packaged with DLATK. Here color represents the word’s frequency in the
corpus (grey to red for infrequent to frequent) and size represents correlation strength.

Contact Information

•Web: http://dlatk.wwbp.org
•GitHub: http://github.com/dlatk/
•Email: has@cs.stonybrook.edu, sgiorgi@seas.upenn.edu

Use Case 2: Prediction / Classification
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tf-idf)

Occurrence
Threshold

(removes all 
low-variance features)
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(randomized PCA)

Outcome Score Source
Demographic (user-level)

Age R = 0.83 [3]
Gender Acc = 0.92

Big-Five Personality (user-level)
Openness R = 0.43 [4]

Conscientiousness R = 0.37
Extraversion R = 0.42
Agreeableness R = 0.35
Neuroticism R = 0.35

Temporal orientation (message-level)
3-way classif Acc = 0.72 [5]

Intensity & affect (message-level)
Intensity R = 0.85 [6]
Affect R = 0.65

Mental health (user-level)
PTSD AUC = 0.86 [7]

Depression AUC = 0.87
Degree of dprssn R = 0.39 [8]

Physical health (US county-level)
Heart disease mortality R = 0.42 [9]

Table: Survey of predictive model scores trained using DLATK in peer-reviewed publications. Scores
reported are: R: Pearson correlation; Acc: accuracy; AUC: area under the ROC curve.
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