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Full national coverage below the state level is difficult to attain through survey-based data collection. Even 
the largest survey-based data collections, such as the CDC’s Behavioral Risk Factor Surveillance System or the 
Gallup-Healthways Well-being Index (both with more than 300,000 responses p.a.) only allow for the estimation 
of annual averages for about 260 out of roughly U.S. 3,000 counties when a threshold of 300 responses per 
county is used. Using a relatively high threshold of 300 responses gives substantially higher convergent validity–

higher correlations with health variables–than lower thresholds but covers a reduced and biased sample of the 
population. We present principled methods to interpolate spatial estimates and show that including large-scale 
geotagged social media data can increase interpolation accuracy. In this work, we focus on Gallup-reported life 
satisfaction, a widely-used measure of subjective well-being. We use Gaussian Processes (GP), a formal Bayesian 
model, to interpolate life satisfaction, which we optimally combine with estimates from low-count data. We 
interpolate over several spaces (geographic and socioeconomic) and extend these evaluations to the space created 
by variables encoding language frequencies of approximately 6 million geotagged Twitter users. We find that 
Twitter language use can serve as a rough aggregate measure of socioeconomic and cultural similarity, and 
improves upon estimates derived from a wide variety of socioeconomic, demographic, and geographic similarity 
measures. We show that applying Gaussian Processes to the limited Gallup data allows us to generate estimates 
for a much larger number of counties while maintaining the same level of convergent validity with external 
criteria (i.e., N = 1,133 vs. 2,954 counties). This work suggests that spatial coverage of psychological variables 
can be reliably extended through Bayesian techniques while maintaining out-of-sample prediction accuracy and 
that Twitter language adds important information about cultural similarity over and above traditional socio-

demographic and geographic similarity measures. Finally, to facilitate the adoption of these methods, we have 
also open-sourced an online tool that researchers can freely use to interpolate their data across geographies.
1. Introduction

Large geolocated data sets derived from psychological surveys or, 
recently, social media are an important tool for social scientific and 
public health research (Rentfrow, 2020; Hoover and Dehghani, 2020; 
Edo-Osagie et al., 2020). Such data sets have given further insight 
into personality, implicit racial attitudes, and subjective well-being, 
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for example, by examining both their geographic variation and their 
relationships to other real-world outcomes (such as voting or polic-

ing) (Ebert et al., 2019; Hehman et al., 2019; Ward et al., 2021). In 
the case of geolocated social media data sets, community-level Twitter 
language has been used to predict health (Eichstaedt et al., 2015), be-

havior (Curtis et al., 2018), and psychological constructs (Giorgi et al., 
2022b), in addition to standard socio-demographic and political out-
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comes (Culotta, 2014; Miranda Filho et al., 2015). The magnitude of 
these data sets (often containing millions of survey responses or bil-

lions of social media posts) allows researchers to study populations at 
multiple temporal and spatial levels, including both cross-national and 
sub-national levels (e.g., counties, cities, and neighborhoods) (Thom-

son et al., 2018; Cui et al., 2022; Bleidorn et al., 2016; Gibbons et al., 
2019). These data sets are often less expensive and easier to collect (via 
online surveys or publicly available data streams) than those built from 
standard national polling techniques.

Despite the promise of large data sets that can be aggregated 
geographically, there are several methodological issues when doing 
fine-grained regional analyses, such as selection biases (i.e., non-

representative samples of the underlying population (Giorgi et al., 
2022a)) and limited geographic coverage due to data sparsity (Hoover 
and Dehghani, 2020). These sparsity issues are especially problematic 
when attempting to build stable estimates at (1) fine-grained spatial 
or temporal intervals (such as sub-state or sub-annual levels) and (2) 
low-population areas. Data sparsity issues can affect traditional survey 
and social media data sets alike. For example, the Centers for Disease 
Control (CDC) does not release mortality data for a U.S. county if the 
number of deaths is less than 10 (since a death record in this situation 
could reveal potentially private information). As a result of this, for ex-

ample, when predicting maternal mortality with Twitter data, Abebe et 
al. (2020) were only able to work with outcome data from 197 out of 
roughly 3,000 U.S. counties, despite aggregating mortality over multi-

ple years.

One standard approach when aggregating individual-level survey re-

sponses is to set a minimum threshold on the number of responses per 
spatial unit and ignore spatial units that do not meet this minimum. This 
approach is problematic in several ways, in addition to the fact that po-

tentially useful data is discarded. First, there are no standards as to how 
to pick this minimum, and, thus, several minimums have been used 
across the literature (e.g., 50, 100, or 300) (Ebert et al., 2023; Matz 
and Gladstone, 2020; Stelter et al., 2022; Giorgi et al., 2018; Jaidka 
et al., 2020). As this threshold increases, the number of spatial units 
used in the final analysis decreases. Different choices of threshold can 
lead to coverage and results that are hard to compare between stud-

ies; for example, a 50 response minimum yielded 2,281 counties in one 
study (Ebert et al., 2023), while 1,208 counties met a 300 response 
minimum in another (Jaidka et al., 2020). Not only does the sample 
size decrease, but this decrease is non-random, typically removing ru-

ral counties, biasing the final sample towards urban areas with high 
population densities.

On the other hand, low minimum thresholds can produce unreli-

able spatial estimates. Giorgi et al. (2022b) showed that low mini-

mum thresholds (< 500) resulted in low convergent validity between 
county-level language-based estimates of personality and self-reports. 
Similarly, Ward et al. (2021) showed low test-retest reliability for both 
county-level life satisfaction and happiness when using low minimum 
thresholds (< 200), with reliability stabilizing after 300 minimum re-

sponses. Thus, high minimum thresholds are needed to ensure the reli-

ability of the spatial aggregates.

One possible solution to this trade-off between low thresholds 
(which retain data and help with representativeness) and high thresh-

olds (needed for reliability) is to set a higher threshold and then interpo-

late across space using the more reliable estimates to “fill in the whites-

pace.” Several multivariate interpolation methods have been used suc-

cessfully throughout geostatistics, such as inverse distance weighting 
and nearest neighbor interpolation (Sibson, 1981). Despite their suc-

cess, many of these methods suffer from the fact that model parameters 
need to be manually selected and evaluated (e.g., in the nearest neigh-

bor algorithm, one must select the number of neighbors a priori). Com-

pounding this problem is the fact that neighbors may also be missing.

To address this problem, we propose Gaussian Processes (GP) to 
interpolate measures of interest from high-dimensional spatial, socio-
2

demographic, and social media data. These methods are referred to 
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as both kriging (Cressie, 1990), in spatial statistics, or Gaussian Pro-

cess regression (Williams and Rasmussen, 2006), in machine learning. 
Gaussian Processes are uniquely equipped to deal with this problem 
by directly modeling the covariances between outcomes using a kernel 
function (also called a covariance function), which calculates the simi-

larity or closeness between points. The kernel parameters, called length 
scales, model the extent to which a change in the inputs reflects changes 
in output. The length scales are learned (as opposed to being chosen a 
priori) from training data, which allows one to automatically identify 
the most predictive length scales for each feature (e.g., demographics or 
word topics). Additionally, the GP interpolations are probabilistic and, 
thus, produce empirical confidence intervals. These confidence inter-

vals can then be used to optimally combine the interpolations with data 
that does not meet minimum thresholds, thus allowing researchers to 
maximize data use.

In this paper, we propose to address three research questions:

RQ1: What categories of community features are useful for interpo-

lation?

RQ2: What is the minimum amount of data required for effective 
interpolation?

RQ3: Can supplemental data be used to improve interpolation ac-

curacy?

For all three questions, we interpolate life satisfaction across U.S. coun-

ties, though we note that all methods are independent of the data used 
here. For RQ1, we note that traditional interpolation techniques (i.e., 
kriging) consider points close in 2- or 3-dimensional physical space. 
Here, we propose using higher-dimensional community characteristics 
such as demographics, socioeconomics, and social media language, in 
addition to standard geographic space. For RQ3, we propose to com-

bine “missing” life satisfaction data (i.e., data from counties that do 
not meet our minimum count threshold) with the interpolated GP esti-

mates to increase predictive performance. These estimates are optimally 
combined via inverse-variance weighting, using the uncertainty of the 
interpolations from the GP. Finally, we investigate the robustness of 
the interpolations by examining validity with external criteria. In or-

der to make these methods available to the research community, we 
open-source a web interface for running interpolation over other data 
sources.1

2. Data

Our data falls into three classes: outcomes (measures which we want 
to interpolate), features (measures which we interpolate over, i.e., use 
to train a Gaussian process model), and external criteria (measures 
which we use to validate our interpolations). A total of 1,133 U.S coun-

ties had data available for all of the measures listed below. From this, 
we create train and test data sets using an 80%/20% split, which results 
in 905 counties for training and 228 for testing. The training data set 
is used to train the Gaussian Process model, whereas the test data set is 
used to evaluate the out-of-sample performance of the GP.2

2.1. Outcomes

Life satisfaction. Life Satisfaction, an evaluative dimension of subjec-

tive well-being, is measured via psychometric self-reports using the 
Gallup-Sharecare Well-Being Index, a large national longitudinal sur-

vey. Participants are asked to respond to Cantril’s ladder (Diener et al., 
1999), which asks survey participants to evaluate their life as a whole: 
“Please imagine a ladder with steps numbered from zero at the bottom 
to 10 at the top. The top of the ladder represents the best possible life 

1 https://county -interpolation .wwbp .org.

2 Data and code available at https://osf .io /edjak/.

https://county-interpolation.wwbp.org
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for you and the bottom of the ladder represents the worst possible life 
for you. On which step of the ladder would you say you personally feel 
you stand at this time?” We aggregate 2,035,511 responses from 2009 
to 2016. To be included in the analysis, counties must have a minimum 
of 300 responses, an established minimum threshold (Ward et al., 2021; 
Jaidka et al., 2020).

2.2. Features

Categories of features are chosen in order to answer RQ1: which 
types of features are useful for interpolation above standard geography 
or location information (which are typically used when interpolating 
via Gaussian Processes). Features within each category are chosen to be 
representative of the category, and no single feature should be thought 
of as more important than another. In general, non-social media fea-

tures are chosen for three reasons: (1) data is publicly available, (2) 
data is available for the majority of counties, (3) data is measured via 
the U.S. Census. Together, these three points allow these same variables 
to be used across similar interpolation problems, maximize spatial cov-

erage, and limit biases.3 The categories and features included here are 
by no means exhaustive and were intentionally selected to be general 
use in order to emphasize the utility of the methods, as opposed to op-

timizing on predicting life satisfaction.

Geography. In order to compare counties close in physical space, we in-

clude latitude and longitude coordinates corresponding to the centroid 
of each county.

Demographics. We include seven demographic variables, each col-

lected from the U.S. Census American Community Survey (5-year esti-

mates from 2010 to 2014): the percentage of the population living in a 
rural area, percentage of the population of Hispanic origin, population 
(logged to prevent skewness), median age, percentage of the popula-

tion who identify as female, percentage married, and the percentage of 
African Americans living in the county.

Socioeconomics. We include four socioeconomic variables which were, 
again, collected from the U.S. Census American Community Survey (5-

year estimates from 2010 to 2014): median household income (logged 
to prevent skewness), percentage of the population with at least a Bach-

elor’s degree, unemployment rate, and high school graduation rate.

Social media data. We use the County Tweet Lexical Bank (Giorgi et al., 
2018), a large open-source data set of U.S. county aggregated Twitter 
features. This data set is derived from a sample of 1.53 billion tweets 
from approximately 6 million Twitter users from 2009 to 2015. Each 
Twitter user is mapped to a U.S. county through self-reported location 
information available in the user’s profile (e.g., “New York City native”) 
or latitude/longitude coordinates associated with their tweets. Full de-

tails of the county mapping process can be found in Schwartz et al. 
(2013a). Each Twitter user must have at least 30 tweets in the data set, 
and each U.S. county needs at least 100 such users. In the end, a total of 
2,041 counties met these thresholds. A set of 2,000 topics are extracted 
for each user and then averaged to the county level (across all users 
mapped to the county). Topics are automatically clustered groups of 
semantically related words and are created using Latent Dirichlet Allo-

cation (LDA) (Blei et al., 2003), a generative Bayesian topic model that 
assumes text documents are characterized by distributions over topics 
and topics are characterized by distributions over words. The specific 
set of 2,000 topics used in the current study was developed in previous 
work across a data set of 19 million Facebook posts (Schwartz et al., 
2013b) and has been successfully used across several U.S. county-level 

3 While U.S. Census data may suffer from biases, such as non-response bias, 
3

it is typically considered a gold standard when doing spatial analysis.
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studies (Jaidka et al., 2020; Giorgi et al., 2022b; Curtis et al., 2018). We 
ran Principal Component Analysis (PCA) across the 2,041 U.S. counties 
and created reduced feature sets of size 10, 15, 25, 50, and 100 princi-

pal components. This was done since the total number of topics (2,000) 
is larger than the number of observations (906 counties in the training 
data set). The difference in sizes between the observations and features 
could lead to overfitting, where the Gaussian Process model learns the 
training data too closely and, thus, will not generalize well to the un-

seen counties in the test data.

2.3. External criteria

These measures are chosen due to known associations with life 
satisfaction at both the individual level (Lee and Singh, 2020; Kahne-

man and Deaton, 2010; Wadsworth and Pendergast, 2014) and regional 
level (Arora et al., 2016; Lawless and Lucas, 2011). Similar to the fea-

ture variables, external criteria are chosen due to the fact that they 
can be robustly measured across most U.S. counties and, thus, there is 
ample data to compare against the interpolations. The external criteria 
are available for a total of 2,954 counties. Notably, this includes 1,821 
counties not present in the train/test data since here we are interpo-

lating life satisfaction across counties that do not have a gold standard. 
Finally, we note that this does not result in spatial coverage across 100% 
of the U.S., as some counties do not have publicly available data for all 
measures.

Life expectancy. Life Expectancy is defined as the average number of 
years from birth that a person can be expected to live and is calculated 
using age-adjusted death rates from the population. Life expectancy is 
measured by the National Center for Health Statistics - Mortality Files 
from 2016–2018 and is obtained using the 2020 County Health Rank-

ings (CHR) data.

Obesity. Obesity is defined as the percentage of adults within a county 
that report a body mass index (BMI) of 30 or more. Data is reported 
from the 2013 Centers for Disease Control and Prevention (CDC) Di-

abetes Interactive Atlas and obtained from the 2017 County Health 
Rankings (Remington et al., 2015).

Income and education. For both income and education, we use the mea-

sures listed above in the socioeconomic features: median household 
income (logged to prevent skewness) and percentage of the population 
with at least a Bachelor’s degree. Both are collected from the U.S. Cen-

sus American Community Survey (5-year estimates from 2010 to 2014). 
We note that both income and education are also used as features for 
interpolation. It may be the case (shown below) that interpolated out-

comes correlate more with features than non-interpolated outcomes. 
Thus, using variables as both features and external criteria will artifi-

cially inflate associations. Therefore, we remove income and education 
from the feature data when comparing interpolations to external crite-

ria.

3. Methods

3.1. Gaussian process regression

Gaussian Process (GP) regression is a machine learning algorithm, 
which is both supervised (i.e., learns a mapping between features 𝑥, 
such as sociodemographics, and labels 𝑦, such as life satisfaction) and 
probabilistic (i.e., model outputs can be used to determine uncertainty). 
The full mathematical details are outside of the scope of the current 
study. However, the interested reader can consult Appendix A for more 
details on the kernel function or Schulz et al. (2018) for a full exposition 
on Gaussian Processes for psychology and social sciences.

At a high level, a Gaussian Process is defined by a mean and covari-
ance function, also known as a kernel. This function induces similarity 
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between pairs of data points. That is, given two data points 𝑥𝑖 and 𝑥𝑗 , if 
they are similar via the kernel, then their corresponding labels 𝑦𝑖 and 𝑦𝑗
will also be similar. For example, if the feature vectors 𝑥𝑖 and 𝑥𝑗 (e.g., 
socio-demographics and Twitter topics for counties 𝑖 and 𝑗) are simi-

lar, then their corresponding life satisfaction values 𝑦𝑖 and 𝑦𝑗 will also 
be similar. Given the kernel function and training data set, we can fully 
specify the Gaussian Process model. Then, given a feature vector 𝑥∗
from an unseen county (i.e., a county not included in the training data), 
we can estimate a life satisfaction score 𝑦∗ by measuring the similarity 
between 𝑥∗ and all points in the training data via the kernel.

Traditionally, Gaussian Processes are known as kriging in the field 
of geostatistics and have been used for decades to interpolate two- or 
three-dimensional spatial data, with applications in mining and envi-

ronmental sciences (Chilès and Desassis, 2018). More recently, Gaussian 
Processes have been used in the field of Machine Learning (Williams 
and Rasmussen, 2006), incorporating methods and practices from deep 
learning. Using GPytorch (Gardner et al., 2018), a modern Python-based 
implementation of Gaussian Processes, we are able to learn the model 
hyperparameters (parameters which control the model learning) from 
the training data. Hyperparameters are typically chosen by searching 
over several potential values and evaluating the trained model at each 
value, which can be time-consuming and expensive. Learning hyperpa-

rameters allows non-specialists to train models using formal methods, 
thus extending these methods to a larger audience.

3.2. Inverse variance weighting

Inverse variance weighting is an optimal method for combining ran-

dom variables via a weighted sum, such that the weighted average has 
the minimum variance across all possible weighted sums (Hartung et 
al., 2008). More formally, given a sequence of observations 𝑦𝑖 with re-

spective variances 𝜎2
𝑖
, the weighted average is computed as:

�̂� =

∑
𝑖

1
𝜎2
𝑖

𝑦𝑖

∑
𝑖

1
𝜎2
𝑖

. (1)

We use inverse variance weighting to optimally combine the GP in-

terpolations with the life satisfaction estimates (i.e., average of the 
person-level responses for each county) from counties that do not meet 
our minimum data threshold. We compute each county’s 𝑐 life satisfac-

tion estimate 𝑦𝑐 as

𝑦𝑐 =
( 𝑦𝐺𝑃 ,𝑐

𝜎2
𝐺𝑃 ,𝑐

+
𝑦𝐿𝐶,𝑐

𝜎2
𝐿𝐶,𝑐

)/( 1
𝜎2
𝐺𝑃 ,𝑐

+ 1
𝜎2
𝐿𝐶,𝑐

)
, (2)

where 𝑦𝐺𝑃 and 𝜎2
𝐺𝑃

are the GP’s life satisfaction estimate and vari-

ance, respectively, and 𝑦𝐿𝐶 and 𝜎2
𝐿𝐶

are the life satisfaction estimate 
and variance from the low-count data, respectively. Specifically, inverse 
variance weighting is used to answer RQ3 and is not used in either RQ1

or RQ2.

3.3. Evaluation

We begin (RQ1) by considering which community features are use-

ful for interpolation. Here, we abstract the standard notion of space 
(i.e., physical location) and consider counties neighbors if they are close 
across several non-geographic community characteristics: demograph-

ics, socioeconomics, and social media language use. We approachethis 
evaluation in two stages, by first considering non-language features (ge-

ography, demographics, and socioeconomics) and then adding social 
media language features on top of those. This was done for practical rea-

sons: language data is not always available, while socio-demographics 
via the U.S. Census are readily available for most counties. Thus, we 
would like first to see how accurate our model is given available data 
and then how much of a boost we can get if we add in other data 
4

sources.
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Next, for RQ2, we evaluate the minimum amount of data needed for 
effective interpolation. To do this, we randomly sample subsets of our 
training data. Specifically, we (1) randomly sample 10, 20, 40, 80, 160, 
320, 640, and 905 counties from our training data set, (2) train a GP re-

gression model, and (3) interpolate life satisfaction on our held-out test 
data set. This is repeated 50 times, and we report the average product-

moment correlation across the 50 repetitions. We note that in Step (1), 
our complete training data set consists of 905 counties. Thus, we do not 
randomly sample at this stage, and this model is only evaluated once 
(as opposed to 50 times when randomly downsampling counties). We 
use the GPytorch package to implement the GP models (Gardner et al., 
2018)2, set a learning rate of 0.1, and iterate over the training data 
500 times. Again, we first consider non-language features (spatial and 
socio-demographics features) and then add language on top of those.

For RQ3 (can supplemental data be used to improve interpolation 
accuracy), we combine the GP interpolations with averages from data 
that does not meet our minimum count thresholds. We use the best-

performing models from RQ1 and considered the complete training 
data set (N = 905). This model is then used to both interpolate life 
satisfaction values 𝑦𝐺𝑃 ,𝑐 for each county 𝑐 in our test data set, as well as 
estimate the variance 𝜎2

𝐺𝑃 ,𝑐
for each county’s interpolation. Next, using 

subsamples of the participant-level data (i.e., low-count data), we create 
life satisfaction estimates 𝑦𝐿𝐶,𝑐 for each county in the test data set. This 
is done by randomly sampling the participant-level life satisfaction re-

sponses and averaging these responses to the county level. Given that 
our minimum response threshold is 300 in the training data, we ran-

domly sample sets of 𝑛 ∈ (25, 50, 100, 200) participants to produce the 
county averages. We then create new life satisfaction estimates 𝑦𝑐 for 
county 𝑐 using Equation (2), i.e., by optimally combining the GP in-

terpolations with the low-count averages. We then correlate the final 
life satisfaction estimates �̄� with the test data (gold standard life sat-

isfaction values). This process was repeated 50 times, and the average 
product-moment correlation is reported.

Finally, we examine the external validity of the interpolated life sat-

isfaction estimates from RQ3. First, we combine the training and test 
data (N=1133) above to train a GP model to interpolate life satisfac-

tion from our non-language features. We do not use Twitter features 
in this analysis since they are unavailable for all counties and, thus, 
interpolations would have limited spatial coverage. We then interpo-

late life satisfaction across all counties that do not meet our minimum 
300-participant response threshold (N=1,821). Next, we combine the 
GP interpolations with the low-count life satisfaction data. Finally, we 
correlate the combined estimates with external criteria: life expectancy, 
obesity, income, and education. We correlated gold standard life satis-

faction with the external variables as a baseline. Here we show that the 
correlations using the complete data set (i.e., gold standard and inter-

polated life satisfaction across a larger sample of counties) are at least 
as accurate as the correlations using only gold standard life satisfaction 
(across a smaller sample of counties where all life satisfaction values 
are well-estimated). We note that two of the external criteria (income 
and education) are both used as features for interpolation. For these 
evaluations, we train the GP on all features except the variable used for 
external criteria so as to not bias the correlations.

4. Results

Table 1 shows the results for RQ1: which features are useful for 
interpolation. All GPs use a radial basis function (RBF) kernel func-

tion with a single length parameter for all features. See Table D.7 for 
other kernels functions (linear and multi-length RBF). Here we see that 
the geographic features (latitude and longitude) have the lowest out-

of-sample accuracy. Despite this, adding geographic features to either 
socioeconomics or demographics gives a substantial boost (r = 0.57 and 
0.57, respectively) over either socioeconomics or demographics alone 
(r = 0.46 and 0.49, respectively). Similarly, a GP trained on all non-
language features out performs all subsets (r = 0.65). Finally, when 
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Fig. 1. U.S. county map of Gallup life satisfaction (seven quantiles) using (a) 1,133 counties with at least 300 individual-level responses and (b) 2,954 counties that 
include both the counties that meet the minimum response threshold plus counties with interpolated life satisfaction. Higher quantile number indicates greater life 
satisfaction. White cells contain no data as several counties did not have data available for all measures (features) and, thus, interpolation was not possible.
Table 1

Out-of-sample prediction accuracy (product moment correlations with 95% con-

fidence intervals). All correlations significant at 𝑝 < 0.001.

Number of Features Test Set Correlation

Geography 2 0.40 [0.29, 0.50]

Socioeconomics 4 0.46 [0.35, 0.56]

Socioeconomics + Geography 6 0.57 [0.48, 0.66]

Demographics 7 0.49 [0.39, 0.58]

Demographics + Geography 9 0.57 [0.47, 0.65]

All non-language 13 0.65 [0.57, 0.72]

Twitter, 10 PCA components 10 0.44 [0.33, 0.54]

+ All non-language 23 0.68 [0.60, 0.74]

Twitter, 15 PCA components 15 0.54 [0.44, 0.63]

+ All non-language 28 0.69 [0.62, 0.76]

Twitter, 25 PCA components 25 0.62 [0.53, 0.69]

+ All non-language 38 0.70 [0.63, 0.76]

Twitter, 50 PCA components 50 0.62 [0.53, 0.69]

+ All non-language 63 0.69 [0.62, 0.75]

Twitter, 100 PCA components 100 0.61 [0.52, 0.68]

+ All non-language 113 0.68 [0.61, 0.75]

combining Twitter with the non-language variables we see a boost in 
performance above all non-language alone, which is maximal when us-

ing 25 Twitter PCA components (r = 0.70).

Results for RQ2 (what is the minimum amount of data required for 
effective interpolation) are in Fig. 2. Again, all GPs used a RBF kernel 
with a single length parameter learned across all features. Results show 
a mostly monotonic increase (i.e., within the confidence intervals) in 
accuracy as the training size increases.

In Fig. 2(b) we see the results of combining the language features 
(i.e., PCA reductions of the LDA topic space) with the non-language 
features (i.e., latitude/longitude, demographics, and socioeconomics). 
Here we see a slight improvement when adding in language, with the 
final predictive accuracy using the entire training data with 25 PCA 
components resulting in a product moment correlation of 0.70. These

models (25 Twitter PCA components + all non-language variables) are 
then used in all subsequent analyses, except comparing against external 
criteria, where Twitter language is dropped to maximize spatial cov-

erage. We also see that the smallest PCA components set (10 and 15) 
results in the highest accuracy when training on smaller sample sizes, 
outperforming the non-language variables at 320 samples.

Table 2 shows the results of combining the GP interpolation values 
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with the average life satisfaction scores as calculated from random sam-
ples and combined via inverse variance weighting (RQ3). The first row 
GP Interpolation is the results from the model shown in Table 1 using 
all non-language features. The GP Interpolation row remains constant 
since it does not depend on maximum number of samples used in av-

eraging life satisfaction scores (i.e., this ignores the low-count data). 
The Average Life Sat. row is simply the county average life satisfaction 
score using random samples of 25, 50, 100, and 200 participants. The 
Combined row optimally combines (via inverse variance weighting) the 
data from the previous two rows: the GP interpolation and the average 
low-count estimate.

Finally, we validate the interpolated life satisfaction against external 
criteria: life expectancy, obesity, income, and education. Here our base-

line is the correlation with the non-interpolated gold standard average 
life satisfaction (i.e., at least 300 participant responses per county). We 
also consider a simple “state average” interpolation baseline, where we 
assign the state-average life satisfaction score to all counties which do 
not meet the minimum data threshold. Results are in Table 3. The state 
average and average life satisfaction have the lowest correlation across 
all four external variables. We see that the combined model shows sim-

ilar effect sizes as baseline but includes roughly 3,000 observations, 
as opposed to the 1,133 observations in the baseline model. We ran a 
bootstrapping test, to assess statistically significant differences between 
the correlation across the high-count counties and the combined model 
(interpolations plus low-count data). Here we randomly sample (with 
replacement) 1,133 counties and correlate the life satisfaction measure 
with the external criteria, subtracting the two correlations. This process 
is repeated 10,000 times, and no significance is found if the number 0 
is within the 95% confidence interval on the difference in correlations. 
Across all four external criteria we found no difference in effect size be-

tween the gold standard and the interpolated correlations. Fig. 1 shows 
the geographic distribution of the 1,133 gold standard counties as com-

pared to the 2,954 counties with either gold standard or interpolated 
life satisfaction.

5. Discussion

This study found that Gaussian Processes, formal Baysian models, 
can be used to empirically interpolate life satisfaction across U.S. coun-

ties using high-dimensional community characteristics, including social 
media language. Furthermore, GPs provide confidence intervals for the 
interpolations, which allows us to optimally combine the interpolations 
with estimates from noisy data, data typically discarded using standard 
thresholding methods. Finally, these methods allow us to estimate life 

satisfaction across most of the U.S., as seen in Fig. 1.
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Fig. 2. Life satisfaction prediction accuracies as a function of varying training sample sizes (x-axis) and feature spaces (lines): (a) non-language variables and (b) lan-

guage combined with non-language variables. Accuracies are average product moment correlation across 50 random training samples. Error bars are standard errors 
calculated across the 50 correlations. ∗∗∗ significant difference (paired t-test; 𝑝 < 0.001) between model accuracies: (a) all non-language features vs. socioeconomics 
+ geography and (b) 25 PCA Twitter components + all non-language features (the top performing Twitter model) vs. all non-language features.

Table 2

Combining GP interpolations with noisy data. Reported mean, standard error, and 95% confidence intervals of the product moment correlation across 50 iterations. 
Standard error is calculated on the 50 correlations (to measure the variation in effect size due to the random sampling of participant-level data), while the 95% 
confidence intervals are calculated for the mean correlation. We use the best performing model from Fig. 2(b): 25 Twitter PCA components + all non-language 
features. Models trained on the training data set (905 counties) and evaluated on the test data set (228 counties). Average Life Sat. is the average life satisfaction 
estimate across a random sample with corresponding sample size.

Participant Level Sample Size

25 50 100 200

GP Interpolation 0.70 (0.000) [0.69, 0.72] 0.70 (0.000) [0.69, 0.72] 0.70 (0.000) [0.69, 0.72] 0.70 (0.000) [0.69, 0.72]

Average Life Sat. 0.38 (0.007) [0.35, 0.41] 0.49 (0.007) [0.47, 0.52] 0.65 (0.005) [0.63, 0.67] 0.79 (0.003) [0.78, 0.80]

Combined 0.73 (0.002) [0.72, 0.75] 0.75 (0.002) [0.74, 0.77] 0.80 (0.002) [0.78, 0.81] 0.85 (0.002) [0.84, 0.86]
6
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Table 3

Validation with external criteria: product moment correlations between gold standard life satisfaction and external variables across high-count counties alone (i.e., 
non-interpolated life satisfaction from all counties in the train and test data sets; a baseline measure of the relationship between life satisfaction and external criteria) 
and all counties (i.e., a combination of high- and low-count counties; to see how our methods change the relationship between life satisfaction and external criteria). 
We use the best performing model from Fig. 2(a): all non-language features. ▽ bootstrap test shows no significant difference in effect size when compared to average 
life satisfaction across the high-count counties, † income removed from the interpolation feature space, ‡ education removed from the interpolation feature space.

N Life Expectancy Obesity Income† Education‡

High-count counties

Average Life Sat. 1133 0.52 [0.47, 0.56] -0.43 [-0.48, -0.39] 0.42 [0.37, 0.47] 0.38 [0.33, 0.43]

All counties

State average 2954 0.32 [0.29, 0.35] -0.29 [-0.32, -0.25] 0.28 [0.25, 0.32] 0.21 [0.18, 0.25]

GP Interpolation 2954 0.50 [0.47, 0.52] -0.39 [-0.42, -0.36] 0.37 [0.34, 0.41] 0.30 [0.27, 0.33]

Average Life Sat. 2954 0.35 [0.32, 0.38] -0.26 [-0.29, -0.23] 0.31 [0.28, 0.35] 0.23 [0.20, 0.27]

Combined 2954 0.51▽ [0.48, 0.53] -0.39▽ [-0.42, -0.36] 0.40▽ [0.37, 0.43] 0.31▽ [0.28, 0.34]
The results for RQ1 (which community characteristics make an ac-

curate interpolation space), as seen in Table 1, show that each set of 
variables contributes uniquely to the overall accuracy of the model. 
That is, when combining sets of feature (e.g., geographic and socioeco-

nomic), we see an increase in accuracy above each feature set alone. 
Across all models, we see that including geographic features increases 
predictive accuracy despite geography alone being the least accurate 
model. While this is not surprising, since adjacent counties are often 
similar, it suggests that both (1) geographic proximity should not be ig-

nored when considering high-dimensional interpolation spaces and (2) 
adjacency alone does not fully capture the geographic variation of life 
satisfaction.

For the Twitter experiments in Table 1, we see similar performance 
across each set of PCA components. We also see a boost in performance 
when combining both the Twitter and non-language feature sets, with 
an accuracy of 0.70 (product-moment correlation) for the best per-

forming model (25 PCA components + All non-language). This is a 
statistically significant 7.69% increase over “All non-language” alone, 
suggesting that language from social media is capturing predictive sig-

nal not presents in standard geographic or socio-demographic indica-

tors.

While all Twitter experiments produced equivalent predictive accu-

racies in Table 1, we see a different story when examining how much 
data is needed to create an accurate interpolation space (RQ2). In Fig. 2, 
we see smaller feature spaces (10 and 15 PCA components) resulting in 
higher predictive accuracy at smaller training sizes. This is most likely 
due to the GP over-fitting on the training data and not generalizing 
on unseen data since the size of the feature spaces (25, 50, and 100 
plus the 13 non-language features) is larger than the number of train-

ing observations (e.g., 10, 20, and 40 counties). Thus, while accurate 
interpolations are attainable from a small number of observations, one 
must consider the dimensionality of the interpolation space in reference 
to the number of observations.

For both the language and non-language feature spaces in Fig. 2, 
predictive accuracy tends to stabilize around 320 observations (except 
for the 100 Twitter PCA components). This suggests that data from 300-

400 counties may be sufficient to accurately interpolate life satisfaction 
across the U.S. and, thus, may be used as a minimum sample size in 
future data collection efforts (RQ2). Previous studies have shown that 
effect sizes tend to vary (in both direction and magnitude) according to 
the construct at both the individual and regional level (Elleman et al., 
2020; Giorgi et al., 2022b; Eichstaedt et al., 2021) and, thus, we do not 
wish to over-generalize the claim.

Finally, we answer RQ3 in the affirmative: we can use data from 
counties that do not meet the minimum thresholds. Table 2 shows that 
the optimal combination of GP interpolations and estimates from low-

count data provides more accurate estimates than from the GP interpo-

lations alone, thus lowering the minimum data thresholds. In Table 3, 
we also see that we can interpolate life satisfaction across the entire 
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U.S. without a considerable reduction in correlation with external vari-
ables. While we see a reduction in effect sizes, the sample size increases 
from 1,113 to 2,954 counties. Leveraging the low-count data allows us 
to represent more of the U.S. population and, importantly, a section of 
the population that tends to be discarded due to data quality issues (i.e., 
sparsely populated rural areas).

Importantly, the methods introduced here estimate missing data at 
the spatial level and are agnostic to how those spatial level values 
are aggregated from person-level responses. The U.S. county-level life 
satisfaction values used throughout the paper are simple averages of 
person-level data. However, one could use more sophisticated aggre-

gation methods such as multilevel regression with poststratification, 
which could help mitigate selection and non-response biases common 
when dealing with spatially aggregated person-level data (Hoover and 
Dehghani, 2020).

As seen by the small number of white counties in Fig. 1(b), it is 
not always possible to interpolate over the entirety of the U.S. This is 
due to the fact that secondary data must be available to interpolate 
over. Such data is not always available and is highly dependent on the 
type of data and the spatial level. For example, mortality data from 
the CDC is not always available (for privacy reasons) and can become 
even more sparse at the sub-county level (e.g., Census tracts or Census 
blocks). Thus, using mortality data as a feature to interpolate over may 
be limiting. Alternatively, demographic variables from the U.S. Census 
are generally available at smaller spatial resolutions and may be useful 
across many types of interpolation tasks.

Before using these methods, one should consider why data is missing. 
On the one hand, these methods allow researchers to estimate measures 
across populations that are typically ignored or excluded. At the same 
time, these methods have ethical and privacy concerns. For example, 
as discussed above, the CDC does not release mortality data for spatial 
units with less than ten deaths due to privacy reasons. Therefore, inter-

polating such measures could open up the risk of exposing individuals. 
Similarly, governments and private companies could use such methods 
to track protected or private measures across communities without their 
consent. In addition to these privacy concerns, data may be missing for 
other non-random reasons. For example, in the current study, the data 
used to train the Gaussian Process are collected from mostly urban ar-

eas and then used to interpolate across rural areas. This may bias the 
interpolations in that the Gaussian Process can only learn the relation-

ship between the features and Life Satisfaction in the context of urban 
areas. We have attempted to mitigate this bias by using the percent-

age of the population living in a rural area as a feature, though there 
is no reason to believe the trained model can fully generalize from ur-

ban to rural contexts without including more rural areas in the training 
process.

This study is limited in several ways. First, the methods were evalu-

ated using a single construct: life satisfaction. While the proposed meth-

ods are more general and not tied to particular data sources or outcome 
measures, there may be varying performance depending on the con-
struct to be interpolated. Second, each county’s linguistic representation 
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is measured via LDA topics. While LDA is used extensively throughout 
natural language processing and computational social science (as well 
as in other geographic studies), there exist many other ways to measure 
language, including other topic models (such as Latent Semantic Analy-

sis (Landauer et al., 1998) and BERTopic (Grootendorst, 2022)) as well 
as more modern contextual embeddings, such as BERT (Devlin et al., 
2019) and GPT-3 (Brown et al., 2020). While contextual embeddings 
have become standard across many computational tasks (Rogers et al., 
2021), they have yet to be evaluated in the context of spatial language 
or community-level prediction tasks. We also note that this paper’s so-

cial media data set consists of over 1.5 billion tweets. Running models 
such as BERT over such a large data set is computationally expensive 
(i.e., must be run over each tweet) when compared to extracting LDA 
topics, which is linear and can thus be done on aggregated county rep-

resentations. Finally, there are better ways to measure spatial proximity 
in the U.S. than the geographic features (latitude and longitude coordi-

nates of county centroids). For example, the average distance between 
two adjacent counties on the East Coast (where counties are smaller on 
average) is smaller than the average two adjacent counties on the West 
Coast (where counties are much larger). Thus, the GP kernel’s length 
parameter will perform differently across the entire U.S. To properly 
handle this issue, one could define a GP over a graph, where adjacent 
counties are connected nodes within the graph (Ng et al., 2018), thus 
circumventing the need for an invariant distance measure.

One must also consider the downstream applications of the inter-

polations. For example, Table B.4 shows the correlations between the 
socio-demographic features used to create the interpolation space and 
life satisfaction, both the gold standard estimates (i.e., the test data 
set) and the interpolations. Here, the interpolated life satisfaction corre-

lates more with the socio-demographic features than the gold standard. 
Thus, one may want to avoid using the socio-demographic features in 
any downstream applications as the results may be confounded. Simi-

larly, these increases in association with features could amplify biases 
in the data set. For example, Table B.4 shows an increase in the as-

sociation between population density and life satisfaction. Given that 
low population areas were mostly excluded from the data set, this in-

crease may not reflect the true relationship between well-being and 
population density and, furthermore, may have changed in the wrong 
direction.

Recommendations. Choosing a feature set to interpolate over should be 
done on a case-by-case basis with an end task in mind: What will the in-

terpolated values be used for? Using life satisfaction as an example, one 
could make a case for interpolating over income since income and life 
satisfaction are highly correlated and, thus, income could be considered 
a proxy for life satisfaction. On the other hand, the resulting interpo-

lated life satisfaction values may be indistinguishable from income. If 
this end task is to study relationships between income and (interpo-

lated) life satisfaction, then the results will be highly confounded. At 
the other extreme, one must select features that correlate with the out-

come of interest for the Gaussian Process to learn how to interpolate. 
Thus, confounds may be unavoidable. One may also consider selecting 
features on which the missing spatial units are biased. In the present 
study, we selected the percentage of the population living in a rural 
area since the counties where no life satisfaction data was available 
were highly rural. This was done under the assumption that the Gaus-

sian Process could learn the relationship between life satisfaction and 
urban/rural counties and thus model this when interpolating over the 
highly rural areas. Due to data constraints, we were unable to fully 
explore this. In the end, we recommend three rules when choosing a 
feature set. First, a feature should be excluded if the interpolated val-

ues will be used to study this feature (i.e., the end task). Second, while 
not highly accurate on their own, simple latitude and longitude coor-

dinates increase accuracy when combined with other features and are 
not immediately confounding. Third, if there is reason to believe a fea-
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ture is confounding downstream results, one should remove that feature 
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from the interpolation space and see if downstream results still hold. Fi-

nally, we highly recommend transparency when reporting interpolated 
results: feature sets should be reported and possible confounds high-

lighted.

6. Conclusions

Gaussian Process regressions can accurately interpolate U.S. county-

level life satisfaction using spatial proximity, socio-demographics, and 
social media language. Importantly, these methods allow for princi-

pled estimation, where model parameters are empirically learned from 
training data, as opposed to chosen a priori. The interpolations can be 
optimally combined with sparse data from under-sampled counties to 
produce accurate and valid life satisfaction estimates for the majority 
of counties in the U.S. By utilizing data from under-sampled counties, 
larger sections of the population are present in the final data set, leading 
to potentially less biased and more representative spatial aggregates.
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Appendix A. Details on Gaussian process regression kernels

The kernel 𝜅 induces similarity between pairs of data points evalu-

ated at 𝑓 : given any two vectors 𝑥𝑖, 𝑥𝑗 , if these vectors are similar via 𝜅
then 𝑓 (𝑥𝑖) and 𝑓 (𝑥𝑗 ) will also be similar. We use a squared exponential 
or Radial Basis Function as our kernel, which defines a smooth function 
between neighboring points:

𝜅(𝑥𝑖, 𝑥𝑗 ) = exp
(−(𝑥𝑖 − 𝑥𝑗 )𝑇 (𝑥𝑖 − 𝑥𝑗 )

2𝑙2
)
. (A.1)

Here 𝑙 is the lengthscale parameter which measures the rate of change 
for each feature in the training data (e.g., a larger lengthscale corre-

sponds to smaller change). One can either use a single lengthscale for 
each feature in the training data or use different lengthscales for each 
feature. The lengthscale is traditionally a tuning parameter (e.g., se-

lected through a grid search). Using GPytorch (Gardner et al., 2018), 
we are able to learn the lengthscale 𝑙 from the training data.

Appendix B. Correlations with socio-demographics

In Table B.4 we show the correlations between both the known 
life satisfaction estimates and the interpolated values and the socio-

demographics variables used to create the interpolation space. Across 
all socio-demographics variables we see a larger correlation with the 
life satisfaction interpolations than the gold standard life satisfaction.

Appendix C. Spatial autocorrelation

Here we calculate the spatial autocorrelation of all of the non-

language features used to train the Gaussian Process. Spatial autocorre-

lation measures the degree to which counties closer in space have more 
similar feature patterns than more distant counties. We use Moran’s I to 

measure spatial autocorrelation (Moran, 1950), which ranges from -1 

https://osf.io/edjak/
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Table B.4

Product moment correlations between socio-demographics and life satisfaction (228 counties in the test data set), 
using both the average life satisfaction from high-count counties and the interpolated estimates. Here we use the 
best performing model from Fig. 2(b): 25 Twitter PCA components + all non-language features.

Variable Average life satisfaction 
(high-count counties)

Interpolated 
life satisfaction

Demographics % Rural -0.31 [-0.42, -0.18] -0.45 [-0.55, -0.34]

% Hispanic 0.07 [-0.06, 0.20] 0.18 [0.05, 0.30]

Population 0.17 [0.04, 0.29] 0.31 [0.18, 0.42]

Median Age -0.14 [-0.26, -0.01] -0.29 [-0.40, -0.16]

% Female 0.11 [-0.02, 0.24] 0.12 [-0.01, 0.25]

% Married 0.17 [0.04, 0.30] 0.10 [-0.03, 0.23]

% Africa American 0.11 [-0.02, 0.24] 0.17 [0.04, 0.29]

Socioeconomics Median Household Income 0.41 [0.30, 0.51] 0.61 [0.53, 0.69]

% Bachelor’s degree 0.31 [0.19, 0.42] 0.53 [0.43, 0.61]

Unemployment Rate -0.41 [-0.51, -0.30] -0.47 [-0.57, -0.37]

High School Graduation Rate 0.13 [-0.00, 0.25] 0.06 [-0.07, 0.19]
Table C.5

Moran’s I (a measure of spatial autocorrelation) for each feature in the test data 
set (905 counties). All results significant at 𝑝 < 0.01.

Variable Moran’s I

Demographics % Rural 0.39

% Hispanic 0.78

Population 0.41

Median Age 0.35

% Female 0.23

% Married 0.10

% Africa American 0.55

Socioeconomics Median Household Income 0.55

% Bachelor’s degree 0.35

Unemployment Rate 0.48

High School Graduation Rate 0.40

(dispersion or clustering of dissimilar values) to 1 (clustering of similar 
values), where 0 represents randomness. This is done to examine if the 
Gaussian Process can learn better interpolations from features which 
have more spatial autocorrelation (i.e., situations where adjacency bet-

ter captures geographic variation).

Results are in Table C.5. Here we see higher Moran’s I, on av-

erage, across the socioeconomic features (Moran’s I = 0.44) versus 
the demographics (Moran’s I = 0.40). This may support the hypoth-

esis that Gaussian Processes can learn better interpolations when the 
adjacency in features captures geographic variation, since the socioeco-

nomic features had higher prediction accuracy than demographics for 
small training sizes (see Fig. 2). We also see that Percent Hispanic has 
the highest spatial autocorrelation and Percent Married has the lowest.

One hypothesis is that the degree of spatial autocorrelation could be 
driving the change in correlations found in Table B.4. To test this, we 
correlate the percentage increase with the Moran’s I values, but see no 
significant relationship (product-moment correlation of -0.50, 𝑝 = 0.12).

Similarly, we calculate Moran’s I for the interpolated life satisfac-

tion values to see how interpolation effects spatial autocorrelation. 
We note that this is done on the test data set features, unlike the 
analysis above which considers the features across the training data 
set. Results are shown in Table C.6. Moran’s I in the test data set 
is 0.04, showing that the life satisfaction scores (from the high-count 
counties) have little spatial autocorrelation. The results show that life 
satisfaction interpolations (regardless of the feature set) have higher 
spatial autocorrelation than the non-interpolated life satisfaction. Look-

ing across specific feature sets, we see the geography features pro-

ducing interpolations with the highest Moran’s I (0.82). This is ex-
9

pected since spatial autocorrelation is measured via adjacency and 
Table C.6

Spatial autocorrelation (Moran’s I) of interpolated life sat-

isfaction values across the test set data (228 counties). 
Moran’s I for the true values (average life satisfaction from 
high-count counties) in the test set 0.04. ∗∗ 𝑝 < 0.01, ∗

𝑝 < 0.05.

Moran’s I

Geography 0.82∗∗

Socioeconomics 0.32∗∗

Socioeconomics + Geography 0.24∗

Demographics 0.34∗∗

Demographics + Geography 0.24∗

All non-language 0.24∗

Twitter, 10 PCA components 0.18

+ All non-language 0.29∗∗

Twitter, 15 PCA components 0.27∗∗

+ All non-language 0.27∗∗

Twitter, 25 PCA components 0.33∗∗

+ All non-language 0.28∗

Twitter, 50 PCA components 0.34∗∗

+ All non-language 0.29∗∗

Twitter, 100 PCA components 0.37∗∗

+ All non-language 0.30∗∗

the geography features are the only features which measure physical 
space. Notably, adding the geography features to other feature sets 
(socioeconomics or demographics) decreases Moran’s I. We also see 
increases in Moran’s I as we increase the number of Twitter PCA com-

ponents.

Appendix D. Kernels

In Table D.7 we investigate the effect of using both linear and RBF 
kernels. As opposed to the results in Table 1, the RBF kernel here learns 
a separate length parameter for all variables in the model (e.g., it learns 
13 length parameters for the “All non-language” model) as opposed to 
learning a single length parameter used across each of the 13 variables.

Appendix E. Twitter interpolations

In Fig. E.3, we show the results of using reduced PCA dimensions 
from Twitter language, as opposed to Fig. 2(b) which combines Twitter 

and all non-language variables.
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Table D.7

Out-of-sample prediction accuracy (product moment correlations with 95% confidence intervals).

Number of Features Linear RBF with separate lengths

Geography 2 0.15 [0.02, 0.28] 0.41 [0.29, 0.51]

Socioeconomics 4 0.46 [0.35, 0.56] 0.47 [0.36, 0.56]

Socioeconomics + Geography 6 0.57 [0.48, 0.65] 0.60 [0.51, 0.68]

Demographics 7 0.41 [0.29, 0.51] 0.49 [0.39, 0.59]

Demographics + Geography 9 0.42 [0.31, 0.52] 0.56 [0.46, 0.64]

All non-language 13 0.61 [0.52, 0.68] 0.65 [0.57, 0.72]

Twitter, 10 PCA dimensions 10 0.28 [0.16, 0.40] 0.46 [0.35, 0.55]

+ All non-language 23 0.61 [0.52, 0.69] 0.66 [0.58, 0.73]

Twitter, 15 PCA dimensions 15 0.42 [0.31, 0.52] 0.53 [0.43, 0.62]

+ All non-language 28 0.64 [0.55, 0.71] 0.68 [0.60, 0.74]

Twitter, 25 PCA dimensions 25 0.51 [0.41, 0.60] 0.61 [0.52, 0.68]

+ All non-language 38 0.68 [0.61, 0.75] 0.68 [0.61, 0.75]

Twitter, 50 PCA dimensions 50 0.55 [0.45, 0.63] 0.62 [0.54, 0.70]

+ All non-language 63 0.67 [0.59, 0.74] 0.68 [0.60, 0.74]

Twitter, 100 PCA dimensions 100 0.56 [0.46, 0.64] 0.62 [0.53, 0.69]

+ All non-language 113 0.67 [0.59, 0.74] 0.67 [0.59, 0.74]

Fig. E.3. Average out-of-sample prediction accuracy (product moment correlation) using only PCA reduced Twitter language. Unlike 2, where the models contain 
both language and non-language features, these models only contain Twitter features. Accuracies are average product moment correlation across 50 random training 

samples. Error bars are standard errors calculated across the 50 correlations.
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