
Supplementary Material for “Predicting U.S. County Opioid Poisoning Mortality From
Multi-Modal Social Media and Psychological Self-Report Data”

Salvatore Giorgi1,2, David B. Yaden3, Johannes C. Eichstaedt4,5, Lyle H. Ungar2, H. Andrew
Schwartz6, Amy Kwarteng1, and Brenda Curtis1,*

1Intramural Research Program, National Institute on Drug Abuse
2Department of Computer and Information Science, University of Pennsylvania
3Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of
Medicine
4Department of Psychology, Stanford University
5Institute for Human-Centered AI, Stanford University
6Department of Computer Science, Stony Brook University
*Corresponding author: brenda.curtis@nih.gov



Figure S1: County level inclusion criteria

Table S1: Summary statistics of Gallup variables



Table S2: County level summary statistics

Table S3: Data sources for all area-based covariates



Table S4: Pearson correlations between all psychometric self-reports and area-based covariates.



Table S5: Correlation between OPM and behavioral health, pharmacotherapy access, and
inequality measures. Reported in-sample Pearson correlation except for groups of predictors
(italicized), which uses a 10-fold cross validation setup.

Table S6: Gallup psychological well-being measures with Demographic controls. Reported
standardized betas and standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05



Table S7: Gallup psychological well-being measures with Socioeconomic controls. Reported
standardized betas and standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05

Table S8: Gallup psychological well-being measures with Access to Health Care controls.
Reported standardized betas and standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05



Table S9: Gallup psychological well-being measures with Pharmacotherapy Access controls.
Reported standardized betas and standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05

Table S10: Gallup psychological well-being measures with Health behaviors controls. Reported
standardized betas and standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05

Table S11: Gallup psychological well-being measures with Economic and Racial Inequality
controls. Reported standardized betas and standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05







Figure S2: Scatter plots for all area-based covariates and psychometric self-reports. We report
both Pearson and Spearman correlations, as well as linear fit lines (black) and lowess curve (red)
in order to highlight both linear and non-linear relationships.



Table S12: Additional out-of-sample prediction metrics for all models evaluated in Figure 2.
Mean Absolute Error shows that the Twitter + All non-language model is able to predict
county-level opioid poisoning rates within 7.1 age-adjusted deaths per 100,000 people (on
average).

Opioid Poisoning Mortality: Age-adjusted vs. Crude Rate

The CDC censors age-adjusted mortality rates for counties with less than 20 deaths and crude
rates (not age-adjusted) for counties with less than 10 deaths. Thus, we could expand our sample
size by considering the crude rate as opposed to the age-adjusted rate used throughout the
manuscript. Using the same multiple cause of death codes, we collect non-age adjusted opioid
poisoning mortality for 2017 and 2018. This is available for 921 counties which also have all
other data available (Twitter, psychometric self-reports, and area-based covariates).

Since we would still like to minimize the influence of age in our results, we create an
age-residualized version of the opioid mortality crude rate. To do this we gather national-level
Census data from the 2014 American Community Survey. We collect the county-level percentage
of the population in three age terciles (where the terciles are calculated at the national-level):
younger than 25 years old, 25 to 49, and 50 years and older. We create a linear regression model
where we predict OPM from the age terciles. We then use the residuals from this model as our
age-adjust crude OPM rate. Finally, we predict the age-adjust crude OPM rate from our
multimodal data (reproducing Figure 2) on the larger sample size (n = 921) and the sample used
in the paper (n = 622). We also report the out-of-sample prediction accuracy using the CDC
age-adjusted rate (i.e., the values from Figure 2) in order to aid the comparison. Here we note
that we are changing both the sample size and the OPM measure. We consider both cases
separately below.

We consider the manually age-adjusted OPM rate across the smaller sample size (i.e., the same
sample size used throughout the main analyses) and compare this to the results in Figure 2,
which uses the CDC age-adjusted mortality rate. As shown in the last two columns of Table S13,
the CDC age-adjusted mortality rate is easier to predict from both Twitter and non-language
variables. One possible explanation for this is that the residualizing process may be a stricter
age-adjustment process and, therefore, removes any age signal from the outcome. Thus, any
age-related features (e.g., median age, percentage of the population over 65, and Twitter
language) will be weaker predictors.



Comparing the first two columns of Table S13 (i.e., comparing changes in sample sizes as
opposed to comparing changes in age-adjustments), we see that the large sample size has (1)
smaller predictive accuracy when using Twitter-based models and (2) little or no change in
predictive accuracy when using non-Twitter-based models (the area-based covariates and
psychometric self-reports). We note that the additional 259 counties used in the expanded sample
size have a much smaller number of Twitter users making up the language estimates. The
average number of Twitter users per county in the 622 counties is 7,926.8 (SD = 23,099.2;
median = 2,091), whereas the average in the 259 additional counties is 1052.4 (SD = 1,265.1;
median = 1,410). It could be that the language estimates for the 259 are noisier than the 622
counties, due to the smaller number of observations that are being aggregated. Past research has
shown that a larger number of Twitter users per county results in higher out-of-sample prediction
accuracy (Giorgi et al., 2018).

Table S13: Out-of-sample prediction accuracy using the age-adjusted OPM rate across a larger
sample (n = 921) and the sample used in the paper (n = 622). We include the results from Figure
2 in the column CDC age-adjustment to aid the comparisons.

Underlying and Multiple Cause of Death Codes

The opioid poisoning mortality rates used in this work were collected from the CDC WONDER
database using the multiple cause of death codes without considering the underlying cause of
death. To address this we obtained age-adjusted rates using the multiple cause of death ICD-10
codes (T40.0, T40.1, T40.2, T40.3, T40.4, and T40.6) along with the following underlying cause
of death codes: X40-44, X60-64, X85, and Y10-Y14. We then correlated these rates with rates
used in the main analysis. The two rates correlated at Pearson r = 0.99.

Drug Lexical Analysis

Rather than looking for general insights into these communities, we would like to know if
communities who suffer from higher opioid poisonings also talk more about drugs and/or
alcohol. We used several substance use related lexica with categories for alcohol, drugs, smoking
and recovery. For each lexica, we count the number of words appearing in the respective lexical
category (e.g., drugs, smoking, or heroin) and normalize that count by the total number of words



written by each county. We then correlate, at the county-level, the normalized word count with
OPM.

We first used the 2018 list of Slang Terms and Code Words from the Drug Enforcement
Administration (DEA)2 and consider the fentanyl, heroin, and all categories. Note that the most
frequent words in our data set are ambiguous e.g. “facebook” is defined by the DEA as “fentanyl
mixed with heroin in pill form.” The next substance use related lexicon we used has three
categories, each related to various types of substance use (alcohol, drugs, and smoking), and a
single category containing all words from the three smaller categories3. These categories were
derived from a large sample of substance abuse related tweets and used to investigate
relationships between substance abuse and various socio-demographic variables at the
community level (i.e., U.S. zip codes). Finally, another study attempted to identify youth beliefs
and behaviors in relation to drug use through a sample of tweets from young adults geotagged in
Pennsylvania4. In general, these lexica tend to use highly specific words or phrases. Due to their
infrequent nature, they do not appear in our Twitter data set, which consists of 25,000 unigrams
(the most frequent in the data set).

Table S14: Pearson correlation with substance related lexica along with the top five most
frequent words from each lexica appearing in our Twitter data set.
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