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Abstract— In this paper, an Adaptive Neural Control (ANC)
architecture is used for system replication and control within
a Resilient Control framework. A dynamic model is chosen for
our plant and a “maliciously attacked” plant. A Model Refer-
ence Adaptive Control (MRAC) architecture is used to replicate
and control the plant to match an ideal reference system. At
certain time, we replicate a malicious attack by changing plant
parameters, injecting false data, or altering sensor data. This
attacked plant is then replicated and controlled to match the
reference system. Simulations were carried out to show that
accurate system replication and resilient control is possible
using adaptive neural networks.

I. INTRODUCTION

The problem of maintaining control in the face of mali-
cious attacks is of growing concern. By malicious attacks we
mean changes to the plant (even the change of the entire plant
model) as well as spoofing types of attacks (i.e., false data
injection and sensor data alteration). We propose a control
system that adaptively replicates and controls a plant through
the use of neural networks and a reference system, which is
independent of the plant. Specifically, the Adaptive Neural
Control architecture is a Model Reference Adaptive Control
(MRAC) system, which was first proposed by D. Hyland and
his collaborators [1]–[4]. The architecture is both hierarchical
and modular, which gives the system a high level of fault
tolerance. It uses two neural networks, one to replicate an
unknown plant and another to control the plant. Since this
system follows the standard MRAC architecture, as shown
in Fig. 1 [5], the plant is controlled to match the closed loop
characteristics of an ideal reference system. In this type of
control setup, the controller is resilient to the changes in the
plant model.

A resilient control system is defined as a system that
maintains state awareness and operational normalcy in re-
sponse to disturbances, including threats of an unexpected
and malicious nature [6]. In the ANC system, if the plant
were to experience a malicious attack, the neural network
would adapt to the newly attacked plant and forget about
the previous plant. Thus, the replication alone is not enough
to satisfy the resilient definition. The connection to resilient
control comes from the MRAC architecture. Here, the first
neural network will adapt to replicate the attacked plant,
and the second neural network will adapt to match the ideal
reference system. Since this reference system is independent
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of the plant, it remains undisturbed. Hence, even in the face
of malicious attacks, the final controlled output matches that
of the similarly controlled, but unattacked plant. It is through
this combination of adaptive replication and ideal reference
system that the ANC system satisfies the requirements of
resilient control.

Fig. 1: Model Reference Adaptive Control Architecture

This paper is organized as follows: Section II defines
the hierarchy of the ANC system and then discusses each
component in detail, as well as convergence results for this
type of neural network. Section III describes the model for
our original plant, attacked plant, and ideal reference system
and presents the simulation results for three different types
of attacks: plant parameter changes, false data injection, and
sensor data alteration. Section IV discusses the results and
finally our conclusions and future directions are given in the
last section.

II. ADAPTIVE NEURAL CONTROL ARCHITECTURE

A. Hierarchy of Control System

The ANC System hierarchy is shown in Fig. 2. The lowest
level contains three devices: a memory unit, an individual
neuron, and a synaptic connector. The next level up in the
hierarchy consists of dynamic ganglia, or groups of neurons,
and Toeplitz synapses, or constrained groups of synaptic
connectors. Next are replicator units, or sets of ganglia.
Finally, at the top of Fig. 2, is the ANC system, which
consists of several replicator units.

B. Memory Units, Neurons and Synaptic Connectors

A memory unit takes a scalar time-series input and pro-
duces an L-dimensional vector consisting of the current value
of the input and the L-1 delayed values. The training signal



Fig. 2: Hierarchy of Adaptive Neural Control System

φ is first sent through the memory unit and results in the
output, for n = 0,1,2, ...,N,

φ̄(n) =


φ(n)

φ(n−1)
...

φ(n−L−1)

 . (1)

Throughout the paper we will use a bar notation (e.g. λ̄ )
to denote a column vector with L past signals augmented as
in (1).

Each neuron is defined as in Fig. 3; a dual channel device
with a forward signal flow path and a backward signal
flow path. Both the forward and backward signal flow paths
consist of a sum of a series of input signals and a bias signal.
The input signals are usually received from other neurons via
synaptic connectors. The neuron sums N forward path inputs
(x1,x2, ...,xN) and the forward bias Ik to form αk which is
then operated on by a neural function g(·) (usually a linear or
sigmoid function). The output of the neural function forms
the output of the forward path of the neuron yk. The signal
αk is also sent into the backward path of the neuron, where
it is operated on by the derivative of the neural function
g′(·). In the backward flow path, the N backward inputs
(x∗1,x

∗
2, ...,x

∗
N) are added to a backward path bias εk. This

sum is then multiplied by the derivative of the neural function
evaluated at αk, resulting in the output of the backward flow
path y∗k . Fig. 4 is a simplified version of Fig. 3 and shows
the N-th input and output of the K-th neuron. The hexagon
represents everything within the forward path and backward
path blocks in Fig. 3. Only the forward path signals are
shown explicitly (all backward path signals are inferred). As
a rule, forward path bias signals are shown entering the top
of the hexagon and backward path bias signals are shown
entering the bottom.

A synaptic connector is a connection between the output of
one neuron and the input of a separate neuron. Each synaptic
connector has an associated scalar weight w(n) at any instant
n, which is multiplied with the output from the neuron.
This product is then fed into the input of the next neuron.
Defined this way, the neuron itself stays static and only the

Fig. 3: Explicit Neuron Diagram

Fig. 4: Simplified Neuron Diagram

synaptic weights change. The synaptic connectors are also
two-way devices, with a forward and backward path input
and a forward and backward path output. Both the forward
and backward path inputs are multiplied by the weight and
the resulting products form the forward and backward path
outputs, respectively. Fig. 5 shows a simplified synaptic

Fig. 5: Simplified Synaptic Connector

connector. Again, only the forward paths are shown, while
the backward paths are inferred.

C. Ganglia

Next in the hierarchy are the ganglia and Toeplitz
synapses, both seen in Fig. 6. The ganglia, which are collec-
tions of neurons, are shown within the dotted lines. In this
figure there are four neurons per ganglia, but in general there
is no limit to the number of neurons contained within a single
ganglia. Toeplitz synapses are constrained groups of synaptic
connectors and they are shown within the solid box in Fig.
6. Specifically, Toeplitz synapses constrain connections in
the following way: any neuron m places from the top of
the ganglia receive signals from all neurons m or more
places from the top of the adjacent ganglia. It is important
to note that any set of synapses constrained in such a way
is considered one Toeplitz synapse. For example, the single



Fig. 6: Ganglia with Toeplitz Synapse

synapses originating from x(k),x(k−1), ...,x(k−3) and ter-
minating at y(k) are all considered one Toeplitz synapse. Sets
of Toeplitz synapses are constrained by Toeplitz matrices
(2) and the numbering for each synaptic weight uses the
following convention: weight wi j is the weight associated
with the output from the j-th neuron in the first ganglia going
to the i-th neuron in the second ganglia.

These types of interconnection impose a temporal ordering
and causality on the neurons. The position of the neurons
determine the age of the data, where top level neurons
represent current data and lower level neurons represent past
data. Since top level neurons do not feed signals into lower
level neurons, past data points do not depend on future
inputs. Therefore, these types of constrained interconnections
are particularly suited for replicating causal systems.

W =


w11 w12 . . . w1N

0 w22 . . . w2N

...
...

. . .
...

0 0 . . . wNN

 (2)

Fig. 7 shows a simplified version of Fig. 6. Ganglia are
denoted by the double hexagon and double lined arrows
denote sets of Toeplitz synapses.

Fig. 7: Simplified Ganglia with Toeplitz Synapse

D. Replicator Unit

The ganglia and Toeplitz synapses are then combined into
replicator units, which are used to replicate unknown systems
and are shown as the dotted line in Fig. 8. To replicate a
general unknown dynamic plant a linear input ganglia, two
layers of nonlinear ganglia in the hidden layer, and one linear
output ganglia are needed [1]. The number of ganglia in the
hidden layer is not restricted, though three are shown in the
figure for simplicity. A series of training impulses are sent
into both a memory unit and the unknown system. The output
from the memory unit is then fed into the forward path bias
of the input ganglia. At the same time, the output from the
unknown plant is also fed into a memory unit. The output
from the plant’s memory unit is then compared to the output
from the output ganglia. The difference is then fed into the
backward path bias of the output ganglia, which is then back
propagated through the ganglia driving the weight update
laws. The replicator unit is responsible for system replication

Fig. 8: General Unknown System with Replicator Unit

and is thus a fundamental part of the ANC system. It is
important to note the difference between system replication
and system identification. By replication we mean to match,
as closely as possible, the input and output of an unknown
system. System identification not only matches input and
output but also requires a mathematical model of the system
dynamics.

E. Adaptive Neural Control System

There are two main parts to the Model Reference ANC
system in Fig. 9 the closed-loop modeler and the control
adaptor. Both parts contain a minimum of two replicator
units, WM and WC. Note that each replicator unit only
shows the input and output layers, the hidden layers are
not shown for simplicity. The closed loop modeler uses the
training signals ξ̄ and the plant sensor outputs to adapt the
weights so that the closed-loop system is replicated. When
εM approaches zero the modeler has replicated the plant
within the closed-loop system. The control adaptor uses a
training signal, its own output, and the output of an ideal
reference system to adjust its weights so that the reference
system is replicated. Note that in the closed-loop modeler,
WC is a copy of the current values being updated in the
control adaptor and WM is left unconstrained. Similarly, in the
control adaptor, WM is a copy of the current values adapted



Fig. 9: Adaptive Neural Control System

by the modeler and WC is left unconstrained. Thus, only one
replicator unit is adapting in both the closed-loop modeler
and control adaptor. Though both the control adaptor and
closed-loop modeler use the same training signal, each has
its own error signal, ε̄C and ε̄M , respectively.

F. Adaptive Update Law

The adaptive update law at time n + 1 depends on the
weight Wk(n), forward path signal x̄k(n), backward path
signal x̄∗k(n), and the global error ε̄(n), all at time n. Wk(0)
must be initialized prior to running the system. For most
purposes initializing all matrices to upper diagonal matrices
with all nonzero entries equal to 0 or 1 will suffice. The law
for the k-th Toeplitz synapse at time n+1, for n = 0,1, ...,N
is as follows

Wk(n+1) =Wk(n)+µk(n)U0 ∗ (x̄∗k(n)x̄T
k (n)) (3)

where
µk(n) = βkF(n), (4)

U0 =


1 1 . . . 1
0 1 . . . 1
...

...
. . .

...
0 0 . . . 1

 ∈ Rm×m, (5)

and Wk ∈ Rm×m with m being the number of neurons in the
ganglia connected via the Toeplitz synapses. The symbol *
denotes the Hadamard product, which is term by term matrix
multiplication. Additionally,

F(n) =
P(n)
A(n)

, (6)

P(n) = L(
1
2
‖ε̄(n)‖2− J), (7)

L(σ) =

{
σ : σ > 0

0 : σ ≤ 0
, (8)

and
A(n) = ∑

ω

‖x̄∗k(n)‖2‖x̄k(n)‖2. (9)

In the above equations, P is referred to as the Performance
Function, J ∈ R is the desired mean square error level,
A(n) is the neural activity level, and ω is the set of all
Toeplitz synapses connecting the two ganglia in question.
The matrix (5) constrains the entire equation to Toeplitz
form. The global error ε̄(n) is the error of the system being
replicated. For example, in Fig. 9, the closed-loop modeler
replicated the unknown plant within a closed-loop and uses
the difference between the replicator unit and the closed-loop
system output. So for this part of the system the global error
is considered ε̄m.

In (7) and (9), ‖ · ‖ denotes the Frobenius norm. As
discussed above, the double lined arrow denotes a set of
Toeplitz synapses constrained by the weight matrix Wk.
Therefore the summation in (9) is over all Toeplitz synapses
within the set constrained by Wk.

In (4), µk(n) is a time varying adaptive speed. This time
varying adaptive speed, along with the Toeplitz synapses,
is one of the defining features of the ANC architecture. βk
is the learning rate constant. This constant is chosen before
adaptation begins and is programmed into the system.

Convergence results for a Toeplitz network with adaption
described by (3) through (9) can be found in [1]. First, we
note that 1

2‖ε̄(n)‖
2 is a function of the training histroy and

of all of the weight matrices Wk for k = 1, ...,Na, where Na
is the number of neural arrays, at time n. Therefore, we can
write

Λ(W (n)) =
1
2
‖ε̄(n)‖2. (10)

We say that (10) is bounded by a homogenous function of
degree M if and only if

0 <
Λ−Λ0

1
M (W −W0)T ∂Λ

∂W

< 1, (11)

for ∀(W −W0) 6= 0Ns and W0 ∈ RNs , where Ns is the total
number of independent, nonzero, synaptic weights, and Λ

has a single global minimum Λ0 at W = W0. In [1] it is
proven that if we assume that all vectors x̄∗k(n) and x̄k(n) in
(3) are uniquely determined, Λ0 ≤ J, Λ(n) is bounded by a
homogeneous function of degree M, and βk < 2M, that

lim
n→∞

Λ(n)≤ J. (12)

III. SIMULATIONS

The control architecture shown in Fig. 9 was built in
Matlab and Simulink. To simulate the malicious attack,
we change the plant model at a specified time during the
simulation. This time can be chosen arbitrarily, but we
assume the controller has been running for some time, and
therefore the closed-loop output already matches that of the
reference system. Thus the attack time is chosen so that the
plant is already being controlled. For example 1 and 2 we
choose t = 5 as the attack time and for example 3 and 4 we
choose t = 3.



Four different learning rate constants are used in the
simulations: βL (for synapses connecting linear neurons to
nonlinear neurons), βN (for synapses between nonlinear
neurons), βM (for synapses in the closed-loop modeler), and
βC (for synapses in the control adaptor). For any single
synaptic connector we use a product of two learning rate
constants, depending on the location of the neuron and the
neural function being used. For example, for a synapse
connecting two nonlinear neuron in the control adaptor the
learning rate constant in (4) is βk = βNβC.

We arbitrarily set the number of outputs from the memory
unit and the number of neurons in each ganglia equal to
10. As an input function we used a unit step with a step
time of 0 to train the neural network. Additionally, the
sample time was set to 0.001 seconds, J to 1.0× 10−8,
the weight matrices connecting the linear ganglia to the
nonlinear ganglia were initialized to upper diagonal matrices
with all nonzero entries equal to 1, and the weight matrices
connecting the nonlinear ganglia to other nonlinear ganglia
to upper triangular matrices with all nonzero entries equal
to 1.0× 10−6. The neural function for the linear neurons
was given as g(x) = x (Fig. 8, input and output ganglia).
The neural function for the nonlinear neurons was a tansig
function

g(x) =
2

1+ e−2x −1. (13)

The sigmoid function is used because, according to the
Universal Approximation Theorem, or Cybenko Theorem
[7], a neural network with a finite number of neurons,
each containing a sigmoid function, can approximate any
continuous function. Specifically, using a sigmoid function
as the neural function, any continuous, real valued function
in the space of continuous functions with support in an m-
dimensional unit hypercube can be uniformly approximated
within an arbitrary tolerance .

A. Example 1: Simple Plant Model Changes

In order to simulate a malicious attack, we consider two
plants; one which is the original undisturbed plant and
another that represents the plant after the attack. Because
of the nature of the ANC system, we consider both plants
“unknown”. For the undisturbed plant, we consider the
following system taken from [8]

ẋ(t) =− f [x(t)]+u(t) (14)

f [x(t)] = 2x(t)+0.8x3(t), (15)

where u(t) is the input to the plant, with the additional
assumption

y(t) = x(t). (16)

For the maliciously attacked plant, we consider the following
simple linear model

T (s) =
1

s+9
. (17)

(a) System Replication (b) System Replication, Zoomed View

(c) Malicious System Replication,
Zoomed View (d) Control

Fig. 10: Simulations for Attacked Linear Model

To follow the control architecture shown in Fig. 9 we need
an additional plant model for the Reference System. Again,
we follow [8] and use the following system

ẋ(t) =−2.5x(t)+2.5u(t) (18)

and assume
y(t) = x(t). (19)

We use the following values for the learning rate constants:
βM = 0.5, βC = 0.5, βN = 5×10−5, and βL = 0.5. Fig. 10a
shows the results of the system replication simulations. Here
we see the output from the closed loop plant and the output
of the closed loop modeler replicator unit. The figure shows
the neural network output matching that of the closed-loop
plant almost identically at all times, even when the system
changes at t = 5 seconds. Fig. 10b is a zoomed in view of
Fig. 10a from t = 0 to t = 0.4. Here we see that the closed-
loop replicator matches the closed-loop plant output before
0.1 seconds. Fig. 10c shows the replication of the malicious
attack, from t = 4.9 to t = 5.1. From this figure we can see
that the new plant is replicated after approximately 0.003
seconds.

Fig. 10d shows both the original plant and the maliciously
attacked plant being controlled to match the reference sys-
tem. The closed-loop output of the first plant matches the
reference system output before t = 1, with slight oscillations.
At 5 seconds we see the plant output drastically change as a
result of the attack. The attacked plant’s output is controlled
to match the reference system’s output approximately 1.5
seconds after the attack.

B. Example 2: Nonlinear Plant Model Changes

For this example our original plant model is decribed by
(14), (15), and (16), and our reference model is described
by (18) and (19). The attacked plant is described by the
following nonlinear model [8],

ẋ(t) =− f [x(t),u(t)]+u(t) (20)



(a) Attacked Nonlinear Model

Fig. 11: Simulations for Attacked Nonlinear Model

f [x(t),u(t)] =
y(t)

1+ y2(t)
+ tanh[u(t)], (21)

with the additional assumption

y(t) = x(t). (22)

Fig. 11a shows the simulation results when our model
changes to the nonlinear plant described by (20), (21), and
(22). All simulation variables for this and all subsequent
simulations are exactly the same as in the previous example,
except we change the learning rate constant values to βM = 1,
βC = 0.1, βN = 1× 10−6, and βL = 0.1. Here we see the
closed-loop plant output matching that of the reference sys-
tem after approximately 11 seconds after the attack occurs.

C. Example 3: Sensor Data Alteration

To simulate sensor data alteration we use the plant de-
scribed by (14), (15), and (16) and the reference system
described by (18) and (19). At t = 3 we add additional data
to the output of the plant. The additional data is another step
signal, whose step time is 0 and whose final value is 3. From
Fig. 12a below we see that the ANC system is able to match
the reference systems output after approximately 3 seconds.

(a) Sensor Alteration (b) False Data Injection

Fig. 12: Simulations for Spoofing Attacks

D. Example 4: False Data Injection

We follow the same procedure detailed above in the sensor
data alteration simulations to simulate false data injection,
except that instead of adding additional data to the output of
the plant, we inject false data into the input of the plant. The
false data is a step signal whose step time is 0 and whose
final value is 3. Fig. 12b shows the results of this simulation.
As seen in the figure, the closed-loop plant output matches
that of the reference system approximately 2 seconds after
the false data is injected.

IV. DISCUSSION

Our system parameters (learning rate constants) were cho-
sen, through repeated simulations, to minimize the control
and replication times as well as guarantee convergence to
the reference system output. Increasing the learning rate con-
stants speeds up replication and control. Setting the learning
rate constants too high resulted in considerable oscillations
in our closed-loop response and often in little to no control.
Simulations show that any learning rate constant set greater
than one resulted in extreme oscillations and absolutely
no replication or control. Choosing small constant values
resulted in extremely long replication and control times but
minimized any overshoot or oscillations. These constants
were also highly sensitive to our original plant, attacked
plant, and referent system models. Despite the sensitivity to
the choice in parameter values, simulations carried out for
various linear and nonlinear plant and reference models gave
similar results with the above parameter values. In particular,
setting βM ≤ 1, βC ≤ βM

5 , βL ≤ 0.1, and βN < 1× 10−4

resulted in fast replication and control times with minimal
overshoot.

V. CONCLUSIONS

In this paper we studied the possibility of accurate system
replication and control with an adaptive neural network
within a resilient control framework. From the simulation
results we conclude that the system replicator is able to
quickly and accurately replicate the original plant and the
“attacked” plant. Despite changes to the plant model, sensor
alteration, and false data injection, our final closed loop
system output matches that of our ideal reference system
after only a few seconds, with worst case time for control
being approximately 12 seconds. Therefore, the Adaptive
Neural Control system described above is able to maintain
control when faced with multiple types of malicious attacks.
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